In this paper,two crossover hybrid variable-order derivatives of the cancer model are developed.Grünwald-Letnikov approximation is used to approximate the hybrid fractional and variable-order fractional operators...In this paper,two crossover hybrid variable-order derivatives of the cancer model are developed.Grünwald-Letnikov approximation is used to approximate the hybrid fractional and variable-order fractional operators.The existence,uniqueness,and stability of the proposed model are discussed.Adams Bashfourth’s fifth-step method with a hybrid variable-order fractional operator is developed to study the proposed models.Comparative studies with generalized fifth-order Runge-Kutta method are given.Numerical examples and comparative studies to verify the applicability of the used methods and to demonstrate the simplicity of these approximations are presented.We have showcased the efficiency of the proposed method and garnered robust empirical support for our theoretical findings.展开更多
The aim of this research is to demonstrate a novel scheme for approximating the Riemann-Liouville fractional integral operator.This would be achieved by first establishing a fractional-order version of the 2-point Tra...The aim of this research is to demonstrate a novel scheme for approximating the Riemann-Liouville fractional integral operator.This would be achieved by first establishing a fractional-order version of the 2-point Trapezoidal rule and then by proposing another fractional-order version of the(n+1)-composite Trapezoidal rule.In particular,the so-called divided-difference formula is typically employed to derive the 2-point Trapezoidal rule,which has accordingly been used to derive a more accurate fractional-order formula called the(n+1)-composite Trapezoidal rule.Additionally,in order to increase the accuracy of the proposed approximations by reducing the true errors,we incorporate the so-called Romberg integration,which is an extrapolation formula of the Trapezoidal rule for integration,into our proposed approaches.Several numerical examples are provided and compared with a modern definition of the Riemann-Liouville fractional integral operator to illustrate the efficacy of our scheme.展开更多
In this paper, we develop a fractional cyclic integral and a Routh equation for fractional Lagrange system defined in terms of fractional Caputo derivatives. The fractional Hamilton principle and the fractional Lagran...In this paper, we develop a fractional cyclic integral and a Routh equation for fractional Lagrange system defined in terms of fractional Caputo derivatives. The fractional Hamilton principle and the fractional Lagrange equations of the system are obtained under a combined Caputo derivative. Furthermore, the fractional cyclic integrals based on the Lagrange equations are studied and the associated Routh equations of the system are presented. Finally, two examples are given to show the applications of the results.展开更多
This research aims to understand the fractional order dynamics of the deadly Nipah virus(NiV)disease.We focus on using piecewise derivatives in the context of classical and singular kernels of power operators in the C...This research aims to understand the fractional order dynamics of the deadly Nipah virus(NiV)disease.We focus on using piecewise derivatives in the context of classical and singular kernels of power operators in the Caputo sense to investigate the crossover behavior of the considered dynamical system.We establish some qualitative results about the existence and uniqueness of the solution to the proposed problem.By utilizing the Newtonian polynomials interpolation technique,we recall a powerful algorithm to interpret the numerical findings for the aforesaid model.Here,we remark that the said viral infection is caused by an RNA type virus which can transmit from animals and also from an infected person to person.Fruits bats which are also known as flying foxes are one of the sources of transmission of NiV disease.Here in this work,we investigate its transmission mechanism through some new concepts of fractional calculus for further analysis and prediction.We present the approximate results for different compartments using different fractional orders.By using the piecewise derivative concept,we detect the crossover ormulti-steps behavior in the transmission dynamics of the mentioned disease.Therefore,the considered form of the derivative is used to deal with problems exhibiting crossover behaviors.展开更多
This paper deals with the study of fractional order system tuning method based on Factional Order Proportional Integral Derivative( FOPID) controller in allusion to the nonlinear characteristics and fractional order m...This paper deals with the study of fractional order system tuning method based on Factional Order Proportional Integral Derivative( FOPID) controller in allusion to the nonlinear characteristics and fractional order mathematical model of bioengineering systems. The main contents include the design of FOPID controller and the simulation for bioengineering systems. The simulation results show that the tuning method of fractional order system based on the FOPID controller outperforms the fractional order system based on Fractional Order Proportional Integral( FOPI) controller. As it can enhance control character and improve the robustness of the system.展开更多
By using the properties of modified Riemann-Liouville fractional derivative, some new delay integral inequalities have been studied. First, we offered explicit bounds for the unknown functions, then we applied the res...By using the properties of modified Riemann-Liouville fractional derivative, some new delay integral inequalities have been studied. First, we offered explicit bounds for the unknown functions, then we applied the results to the research concerning the boundness, uniqueness and continuous dependence on the initial for solutions to certain fractional differential equations.展开更多
By applying the standard fixed point theorems,we prove the existence and uniqueness results for a system of coupled differential equations involving both left Caputo and right Riemann-Liouville fractional derivatives ...By applying the standard fixed point theorems,we prove the existence and uniqueness results for a system of coupled differential equations involving both left Caputo and right Riemann-Liouville fractional derivatives and mixed fractional integrals,supplemented with nonlocal coupled fractional integral boundary conditions.An example is also constructed for the illustration of the obtained results.展开更多
This study focuses on the dynamics of drug concentration in the blood.In general,the concentration level of a drug in the blood is evaluated by themean of an ordinary and first-order differential equation.More precise...This study focuses on the dynamics of drug concentration in the blood.In general,the concentration level of a drug in the blood is evaluated by themean of an ordinary and first-order differential equation.More precisely,it is solved through an initial value problem.We proposed a newmodeling technique for studying drug concentration in blood dynamics.This technique is based on two fractional derivatives,namely,Caputo and Caputo-Fabrizio derivatives.We first provided comprehensive and detailed proof of the existence of at least one solution to the problem;we later proved the uniqueness of the existing solution.The proof was written using the Caputo-Fabrizio fractional derivative and some fixed-point techniques.Stability via theUlam-Hyers(UH)technique was also investigated.The application of the proposedmodel on two real data sets revealed that the Caputo derivative wasmore suitable in this study.Indeed,for the first data set,the model based on the Caputo derivative yielded a Mean Squared Error(MSE)of 0.03095 with a corresponding best value of fractional order of derivative of 1.00360.Caputo-Fabrizio-basedderivative appeared to be the second-best method for the problem,with an MSE of 0.04324 for a corresponding best fractional derivative order of 0.43532.For the second experiment,Caputo derivative-based model still performed the best as it yielded an MSE of 0.04066,whereas the classical and the Caputo-Fabrizio methods were tied with the same MSE of 0.07299.Another interesting finding was that the MSE yielded by the Caputo-Fabrizio fractional derivative coincided with the MSE obtained from the classical approach.展开更多
The present article mainly focuses on the fractional derivatives with an exponential kernel(“exponential fractional derivatives”for brevity).First,several extended integral transforms of the exponential fractional d...The present article mainly focuses on the fractional derivatives with an exponential kernel(“exponential fractional derivatives”for brevity).First,several extended integral transforms of the exponential fractional derivatives are proposed,including the Fourier transform and the Laplace transform.Then,the L2 discretisation for the exponential Caputo derivative with a∈(1,2)is established.The estimation of the truncation error and the properties of the coefficients are discussed.In addition,a numerical example is given to verify the correctness of the derived L2 discrete formula.展开更多
This paper is devoted to studying the behaviors of the fractional type Marcinkiewicz integralsμΩ,βand the commutatorsμΩ,βb generated byμΩ,βwith b b∈Lloc(Rn)on weighted Hardy spaces.Under the assumption of th...This paper is devoted to studying the behaviors of the fractional type Marcinkiewicz integralsμΩ,βand the commutatorsμΩ,βb generated byμΩ,βwith b b∈Lloc(Rn)on weighted Hardy spaces.Under the assumption of that the homogeneous kernelΩsatisfies certain regularities,the authors obtain the boundedness ofμΩ,βfrom the weighted Hardy spaces Hωpp(Rn)to the weighted Lebesgue spaces Lωqq(Rn)for n/(n+β)≤<p≤1 with 1/q=1/p-β/n,as well as the same(Hωpp,Lωqq)-boudedness ofμΩ,βb when b belongs to BMOωp,p(Rn),which is a non-trivial subspace of BMO(Rn).展开更多
Unsaturated expansive soil is widely distributed in China and has complex engineering properties.This paper proposes the unified hydraulic effect shear strength theory of unsaturated expansive soil based on the effect...Unsaturated expansive soil is widely distributed in China and has complex engineering properties.This paper proposes the unified hydraulic effect shear strength theory of unsaturated expansive soil based on the effective stress principle,swelling force principle,and soil–water characteristics.Considering the viscoelasticity and structural damage of unsaturated expansive soil during loading,a fractional hardening–damage model of unsaturated expansive soil was established.The model parameters were established on the basis of the proposed calculation method of shear strength and the triaxial shear experiment on unsaturated expansive soil.The proposed model was verified by the experimental data and a traditional damage model.The proposed model can satisfactorily describe the entire process of the strain-hardening law of unsaturated expansive soil.Finally,by investigating the damage variables of the proposed model,it was found that:(a)when the values of confining pressure and matric suction are close,the coupling of confining pressure and matric suction contributes more to the shear strength;(b)there is a damage threshold for unsaturated expansive soil,and is mainly reflected by strength criterion of infinitesimal body;(c)the strain hardening law of unsaturated expansive soil is mainly reflected by fractional derivative operator.展开更多
In this paper,three kinds of discrete formulae for the Caputo fractional derivative are studied,including the modified L1 discretisation forα∈(O,1),and L2 discretisation and L2C discretisation forα∈(1,2).The trunc...In this paper,three kinds of discrete formulae for the Caputo fractional derivative are studied,including the modified L1 discretisation forα∈(O,1),and L2 discretisation and L2C discretisation forα∈(1,2).The truncation error estimates and the properties of the coeffcients of all these discretisations are analysed in more detail.Finally,the theoretical analyses areverifiedby thenumerical examples.展开更多
This paper discusses further the roughness of Riemann-Liouville fractional integral on an arbitrary fractal continuous functions that follows Rfs. [1]. A novel method is used to reach a similar result for an arbitrary...This paper discusses further the roughness of Riemann-Liouville fractional integral on an arbitrary fractal continuous functions that follows Rfs. [1]. A novel method is used to reach a similar result for an arbitrary fractal function , where is the Riemann-Liouville fractional integral. Furthermore, a general resultis arrived at for 1-dimensional fractal functions such as with unbounded variation and(or) infinite lengths, which can infer all previous studies such as [2] [3]. This paper’s estimation reveals that the fractional integral does not increase the fractal dimension of f(x), i.e. fractional integration does not increase at least the fractal roughness. And the result has partly answered the fractal calculus conjecture and completely answered this conjecture for all 1-dimensional fractal function (Xiao has not answered). It is significant with a comparison to the past researches that the box dimension connection between a fractal function and its Riemann-Liouville integral has been carried out only for Weierstrass type and Besicovitch type functions, and at most Hlder continuous. Here the proof technique for Riemann-Liouville fractional integral is possibly of methodology to other fractional integrals.展开更多
The aim of this paper is to study the S-asymptotically ω-periodic solutions of R-L fractional derivative-integral equation:v′(t)=∫t0(t-s)α-2/Γ(α-1)Av(s)ds+∫+∞-∞e-|τ|f(u(t-τ))dτ,(1)v(0)=u0∈X,(2)where 1 <...The aim of this paper is to study the S-asymptotically ω-periodic solutions of R-L fractional derivative-integral equation:v′(t)=∫t0(t-s)α-2/Γ(α-1)Av(s)ds+∫+∞-∞e-|τ|f(u(t-τ))dτ,(1)v(0)=u0∈X,(2)where 1 <α <2, A:D(A)X→X is a linear densely defined operator of sectorial type on a completed Banach space X, f is a continuous function satisfying a suitable Lipschitz type condition. We will use the contraction mapping theory to prove problem(1) and(2) has a unique S-asymptoticallyω-periodic solution if the function f satisfies Lipshcitz condition.展开更多
This article describes the solution procedure of the fractional Pade-Ⅱ equation and generalized Zakharov equation(GSEs)using the sine-cosine method.Pade-Ⅱ is an important nonlinear wave equation modeling unidirectio...This article describes the solution procedure of the fractional Pade-Ⅱ equation and generalized Zakharov equation(GSEs)using the sine-cosine method.Pade-Ⅱ is an important nonlinear wave equation modeling unidirectional propagation of long-wave in dispersive media and GSEs are used to model the interaction between one-dimensional high,and low-frequency waves.Classes of trigonometric and hyperbolic function solutions in fractional calculus are discussed.Graphical simulations of the numerical solutions are flaunted by MATLAB.展开更多
Background Protamination and condensation of sperm chromatin as well as DNA integrity play an essential role during fertilization and embryo development.In some mammals,like pigs,ejaculates are emitted in three separa...Background Protamination and condensation of sperm chromatin as well as DNA integrity play an essential role during fertilization and embryo development.In some mammals,like pigs,ejaculates are emitted in three separate fractions:pre-sperm,sperm-rich(SRF)and post sperm-rich(PSRF).These fractions are known to vary in volume,sperm concentration and quality,as well as in the origin and composition of seminal plasma(SP),with differences being also observed within the SRF one.Yet,whether disparities in the DNA integrity and chromatin condensation and pro-tamination of their sperm exist has not been interrogated.Results This study determined chromatin protamination(Chromomycin A3 test,CMA_(3)),condensation(Dibromobi-mane test,DBB),and DNA integrity(Comet assay)in the pig sperm contained in the first 10 m L of the SRF(SRF-P1),the remaining portion of the sperm-rich fraction(SRF-P2),and the post sperm-rich fraction(PSRF).While chromatin protamination was found to be similar between the different ejaculate fractions(P>0.05),chromatin condensation was seen to be greater in SRF-P1 and SRF-P2 than in the PSRF(P=0.018 and P=0.004,respectively).Regarding DNA integrity,no differences between fractions were observed(P>0.05).As the SRF-P1 has the highest sperm concentra-tion and ejaculate fractions are known to differ in antioxidant composition,the oxidative stress index(OSi)in SP,calcu-lated as total oxidant activity divided by total antioxidant capacity,was tested and confirmed to be higher in the SRF-P1 than in SRF-P2 and PSRF(0.42±0.06 vs.0.23±0.09 and 0.08±0.00,respectively;P<0.01);this index,in addition,was observed to be correlated to the sperm concentration of each fraction(Rs=0.973;P<0.001).Conclusion While sperm DNA integrity was not found to differ between ejaculate fractions,SRF-P1 and SRF-P2 were observed to exhibit greater chromatin condensation than the PSRF.This could be related to the OSi of each fraction.展开更多
The goal of this research is to develop a new,simplified analytical method known as the ARA-residue power series method for obtaining exact-approximate solutions employing Caputo type fractional partial differential e...The goal of this research is to develop a new,simplified analytical method known as the ARA-residue power series method for obtaining exact-approximate solutions employing Caputo type fractional partial differential equations(PDEs)with variable coefficient.ARA-transform is a robust and highly flexible generalization that unifies several existing transforms.The key concept behind this method is to create approximate series outcomes by implementing the ARA-transform and Taylor’s expansion.The process of finding approximations for dynamical fractional-order PDEs is challenging,but the ARA-residual power series technique magnifies this challenge by articulating the solution in a series pattern and then determining the series coefficients by employing the residual component and the limit at infinity concepts.This approach is effective and useful for solving a massive class of fractional-order PDEs.Five appealing implementations are taken into consideration to demonstrate the effectiveness of the projected technique in creating solitary series findings for the governing equations with variable coefficients.Additionally,several visualizations are drawn for different fractional-order values.Besides that,the estimated findings by the proposed technique are in close agreement with the exact outcomes.Finally,statistical analyses further validate the efficacy,dependability and steady interconnectivity of the suggested ARA-residue power series approach.展开更多
BACKGROUND Hepatitis B(HB)and hepatitis C(HC)place the largest burden in China,and a goal of eliminating them as a major public health threat by 2030 has been set.Making more informed and accurate forecasts of their s...BACKGROUND Hepatitis B(HB)and hepatitis C(HC)place the largest burden in China,and a goal of eliminating them as a major public health threat by 2030 has been set.Making more informed and accurate forecasts of their spread is essential for developing effective strategies,heightening the requirement for early warning to deal with such a major public health threat.AIM To monitor HB and HC epidemics by the design of a paradigmatic seasonal autoregressive fractionally integrated moving average(SARFIMA)for projections into 2030,and to compare the effectiveness with the seasonal autoregressive integrated moving average(SARIMA).METHODS Monthly HB and HC incidence cases in China were obtained from January 2004 to June 2023.Descriptive analysis and the Hodrick-Prescott method were employed to identify trends and seasonality.Two periods(from January 2004 to June 2022 and from January 2004 to December 2015,respectively)were used as the training sets to develop both models,while the remaining periods served as the test sets to evaluate the forecasting accuracy.RESULTS There were incidents of 23400874 HB cases and 3590867 HC cases from January 2004 to June 2023.Overall,HB remained steady[average annual percentage change(AAPC)=0.44,95%confidence interval(95%CI):-0.94-1.84]while HC was increasing(AAPC=8.91,95%CI:6.98-10.88),and both had a peak in March and a trough in February.In the 12-step-ahead HB forecast,the mean absolute deviation(15211.94),root mean square error(18762.94),mean absolute percentage error(0.17),mean error rate(0.15),and root mean square percentage error(0.25)under the best SARFIMA(3,0,0)(0,0.449,2)12 were smaller than those under the best SARIMA(3,0,0)(0,1,2)12(16867.71,20775.12,0.19,0.17,and 0.27,respectively).Similar results were also observed for the 90-step-ahead HB,12-step-ahead HC,and 90-step-ahead HC forecasts.The predicted HB incidents totaled 9865400(95%CI:7508093-12222709)cases and HC totaled 1659485(95%CI:856681-2462290)cases during 2023-2030.CONCLUSION Under current interventions,China faces enormous challenges to eliminate HB and HC epidemics by 2030,and effective strategies must be reinforced.The integration of SARFIMA into public health for the management of HB and HC epidemics can potentially result in more informed and efficient interventions,surpassing the capabilities of SARIMA.展开更多
This paper discusses the existence and multiplicity of positive solutions for a class of singular boundary value problems of Hadamard fractional differential systems involving the p-Laplacian operator. First, for the ...This paper discusses the existence and multiplicity of positive solutions for a class of singular boundary value problems of Hadamard fractional differential systems involving the p-Laplacian operator. First, for the sake of overcoming the singularity, sequences of approximate solutions to the boundary value problem are obtained by applying the fixed point index theory on the cone. Next, it is demonstrated that these sequences of approximate solutions are uniformly bounded and equicontinuous. The main results are then established through the Ascoli-Arzelà theorem. Ultimately, an instance is worked out to test and verify the validity of the main results.展开更多
In this paper, we study the solutions for variable-order time-fractional diffusion equations. A three-point combined compact difference (CCD) method is used to discretize the spatial variables to achieve sixth-order a...In this paper, we study the solutions for variable-order time-fractional diffusion equations. A three-point combined compact difference (CCD) method is used to discretize the spatial variables to achieve sixth-order accuracy, while the exponential-sum-approximation (ESA) is used to approximate the variable-order Caputo fractional derivative in the temporal direction, and a novel spatial sixth-order hybrid ESA-CCD method is implemented successfully. Finally, the accuracy of the proposed method is verified by numerical experiments.展开更多
文摘In this paper,two crossover hybrid variable-order derivatives of the cancer model are developed.Grünwald-Letnikov approximation is used to approximate the hybrid fractional and variable-order fractional operators.The existence,uniqueness,and stability of the proposed model are discussed.Adams Bashfourth’s fifth-step method with a hybrid variable-order fractional operator is developed to study the proposed models.Comparative studies with generalized fifth-order Runge-Kutta method are given.Numerical examples and comparative studies to verify the applicability of the used methods and to demonstrate the simplicity of these approximations are presented.We have showcased the efficiency of the proposed method and garnered robust empirical support for our theoretical findings.
文摘The aim of this research is to demonstrate a novel scheme for approximating the Riemann-Liouville fractional integral operator.This would be achieved by first establishing a fractional-order version of the 2-point Trapezoidal rule and then by proposing another fractional-order version of the(n+1)-composite Trapezoidal rule.In particular,the so-called divided-difference formula is typically employed to derive the 2-point Trapezoidal rule,which has accordingly been used to derive a more accurate fractional-order formula called the(n+1)-composite Trapezoidal rule.Additionally,in order to increase the accuracy of the proposed approximations by reducing the true errors,we incorporate the so-called Romberg integration,which is an extrapolation formula of the Trapezoidal rule for integration,into our proposed approaches.Several numerical examples are provided and compared with a modern definition of the Riemann-Liouville fractional integral operator to illustrate the efficacy of our scheme.
基金Project supported by the National Natural Science Foundations of China(Grant Nos.11272287 and 11472247)the Program for Changjiang Scholars and Innovative Research Team in University(PCSIRT)(Grant No.IRT13097)
文摘In this paper, we develop a fractional cyclic integral and a Routh equation for fractional Lagrange system defined in terms of fractional Caputo derivatives. The fractional Hamilton principle and the fractional Lagrange equations of the system are obtained under a combined Caputo derivative. Furthermore, the fractional cyclic integrals based on the Lagrange equations are studied and the associated Routh equations of the system are presented. Finally, two examples are given to show the applications of the results.
文摘This research aims to understand the fractional order dynamics of the deadly Nipah virus(NiV)disease.We focus on using piecewise derivatives in the context of classical and singular kernels of power operators in the Caputo sense to investigate the crossover behavior of the considered dynamical system.We establish some qualitative results about the existence and uniqueness of the solution to the proposed problem.By utilizing the Newtonian polynomials interpolation technique,we recall a powerful algorithm to interpret the numerical findings for the aforesaid model.Here,we remark that the said viral infection is caused by an RNA type virus which can transmit from animals and also from an infected person to person.Fruits bats which are also known as flying foxes are one of the sources of transmission of NiV disease.Here in this work,we investigate its transmission mechanism through some new concepts of fractional calculus for further analysis and prediction.We present the approximate results for different compartments using different fractional orders.By using the piecewise derivative concept,we detect the crossover ormulti-steps behavior in the transmission dynamics of the mentioned disease.Therefore,the considered form of the derivative is used to deal with problems exhibiting crossover behaviors.
文摘This paper deals with the study of fractional order system tuning method based on Factional Order Proportional Integral Derivative( FOPID) controller in allusion to the nonlinear characteristics and fractional order mathematical model of bioengineering systems. The main contents include the design of FOPID controller and the simulation for bioengineering systems. The simulation results show that the tuning method of fractional order system based on the FOPID controller outperforms the fractional order system based on Fractional Order Proportional Integral( FOPI) controller. As it can enhance control character and improve the robustness of the system.
文摘By using the properties of modified Riemann-Liouville fractional derivative, some new delay integral inequalities have been studied. First, we offered explicit bounds for the unknown functions, then we applied the results to the research concerning the boundness, uniqueness and continuous dependence on the initial for solutions to certain fractional differential equations.
基金This project was funded by the Deanship of Scientific Research(DSR),King Abdulaziz University,Jeddah,Saudi Arabia(KEP-MSc-63-130-42).
文摘By applying the standard fixed point theorems,we prove the existence and uniqueness results for a system of coupled differential equations involving both left Caputo and right Riemann-Liouville fractional derivatives and mixed fractional integrals,supplemented with nonlocal coupled fractional integral boundary conditions.An example is also constructed for the illustration of the obtained results.
基金supported through the Annual Funding Track by the Deanship of Scientific Research,Vice Presidency for Graduate Studies and Scientific Research,King Faisal University,Saudi Arabia[Project No.AN000273],granted after a successful application by M.A.
文摘This study focuses on the dynamics of drug concentration in the blood.In general,the concentration level of a drug in the blood is evaluated by themean of an ordinary and first-order differential equation.More precisely,it is solved through an initial value problem.We proposed a newmodeling technique for studying drug concentration in blood dynamics.This technique is based on two fractional derivatives,namely,Caputo and Caputo-Fabrizio derivatives.We first provided comprehensive and detailed proof of the existence of at least one solution to the problem;we later proved the uniqueness of the existing solution.The proof was written using the Caputo-Fabrizio fractional derivative and some fixed-point techniques.Stability via theUlam-Hyers(UH)technique was also investigated.The application of the proposedmodel on two real data sets revealed that the Caputo derivative wasmore suitable in this study.Indeed,for the first data set,the model based on the Caputo derivative yielded a Mean Squared Error(MSE)of 0.03095 with a corresponding best value of fractional order of derivative of 1.00360.Caputo-Fabrizio-basedderivative appeared to be the second-best method for the problem,with an MSE of 0.04324 for a corresponding best fractional derivative order of 0.43532.For the second experiment,Caputo derivative-based model still performed the best as it yielded an MSE of 0.04066,whereas the classical and the Caputo-Fabrizio methods were tied with the same MSE of 0.07299.Another interesting finding was that the MSE yielded by the Caputo-Fabrizio fractional derivative coincided with the MSE obtained from the classical approach.
文摘The present article mainly focuses on the fractional derivatives with an exponential kernel(“exponential fractional derivatives”for brevity).First,several extended integral transforms of the exponential fractional derivatives are proposed,including the Fourier transform and the Laplace transform.Then,the L2 discretisation for the exponential Caputo derivative with a∈(1,2)is established.The estimation of the truncation error and the properties of the coefficients are discussed.In addition,a numerical example is given to verify the correctness of the derived L2 discrete formula.
文摘This paper is devoted to studying the behaviors of the fractional type Marcinkiewicz integralsμΩ,βand the commutatorsμΩ,βb generated byμΩ,βwith b b∈Lloc(Rn)on weighted Hardy spaces.Under the assumption of that the homogeneous kernelΩsatisfies certain regularities,the authors obtain the boundedness ofμΩ,βfrom the weighted Hardy spaces Hωpp(Rn)to the weighted Lebesgue spaces Lωqq(Rn)for n/(n+β)≤<p≤1 with 1/q=1/p-β/n,as well as the same(Hωpp,Lωqq)-boudedness ofμΩ,βb when b belongs to BMOωp,p(Rn),which is a non-trivial subspace of BMO(Rn).
基金financially supported by Sichuan Huaxi Group Co.,ltd.(No.HXKX2019/015,No.HXKX2019/019,No.HXKX2018/030)the Open Fund of Sichuan Provincial Engineering Research Center of City Solid Waste Energy and Building Materials Conversion and Utilization Technology(No.GF2022ZC009)the Open Fund of Sichuan Engineering Research Center for Mechanical Properties and Engineering Technology of Unsaturated Soils(No.SC-FBHT2022-04)。
文摘Unsaturated expansive soil is widely distributed in China and has complex engineering properties.This paper proposes the unified hydraulic effect shear strength theory of unsaturated expansive soil based on the effective stress principle,swelling force principle,and soil–water characteristics.Considering the viscoelasticity and structural damage of unsaturated expansive soil during loading,a fractional hardening–damage model of unsaturated expansive soil was established.The model parameters were established on the basis of the proposed calculation method of shear strength and the triaxial shear experiment on unsaturated expansive soil.The proposed model was verified by the experimental data and a traditional damage model.The proposed model can satisfactorily describe the entire process of the strain-hardening law of unsaturated expansive soil.Finally,by investigating the damage variables of the proposed model,it was found that:(a)when the values of confining pressure and matric suction are close,the coupling of confining pressure and matric suction contributes more to the shear strength;(b)there is a damage threshold for unsaturated expansive soil,and is mainly reflected by strength criterion of infinitesimal body;(c)the strain hardening law of unsaturated expansive soil is mainly reflected by fractional derivative operator.
文摘In this paper,three kinds of discrete formulae for the Caputo fractional derivative are studied,including the modified L1 discretisation forα∈(O,1),and L2 discretisation and L2C discretisation forα∈(1,2).The truncation error estimates and the properties of the coeffcients of all these discretisations are analysed in more detail.Finally,the theoretical analyses areverifiedby thenumerical examples.
文摘This paper discusses further the roughness of Riemann-Liouville fractional integral on an arbitrary fractal continuous functions that follows Rfs. [1]. A novel method is used to reach a similar result for an arbitrary fractal function , where is the Riemann-Liouville fractional integral. Furthermore, a general resultis arrived at for 1-dimensional fractal functions such as with unbounded variation and(or) infinite lengths, which can infer all previous studies such as [2] [3]. This paper’s estimation reveals that the fractional integral does not increase the fractal dimension of f(x), i.e. fractional integration does not increase at least the fractal roughness. And the result has partly answered the fractal calculus conjecture and completely answered this conjecture for all 1-dimensional fractal function (Xiao has not answered). It is significant with a comparison to the past researches that the box dimension connection between a fractal function and its Riemann-Liouville integral has been carried out only for Weierstrass type and Besicovitch type functions, and at most Hlder continuous. Here the proof technique for Riemann-Liouville fractional integral is possibly of methodology to other fractional integrals.
文摘The aim of this paper is to study the S-asymptotically ω-periodic solutions of R-L fractional derivative-integral equation:v′(t)=∫t0(t-s)α-2/Γ(α-1)Av(s)ds+∫+∞-∞e-|τ|f(u(t-τ))dτ,(1)v(0)=u0∈X,(2)where 1 <α <2, A:D(A)X→X is a linear densely defined operator of sectorial type on a completed Banach space X, f is a continuous function satisfying a suitable Lipschitz type condition. We will use the contraction mapping theory to prove problem(1) and(2) has a unique S-asymptoticallyω-periodic solution if the function f satisfies Lipshcitz condition.
文摘This article describes the solution procedure of the fractional Pade-Ⅱ equation and generalized Zakharov equation(GSEs)using the sine-cosine method.Pade-Ⅱ is an important nonlinear wave equation modeling unidirectional propagation of long-wave in dispersive media and GSEs are used to model the interaction between one-dimensional high,and low-frequency waves.Classes of trigonometric and hyperbolic function solutions in fractional calculus are discussed.Graphical simulations of the numerical solutions are flaunted by MATLAB.
基金This research was supported by the European Union’s Horizon 2020 research and innovation scheme under the Marie Skłodowska-Curie grant agreement No.801342(Tecniospring INDUSTRYGrant:TECSPR-19-1-0003)+4 种基金the Ministry of Science and Innovation,Spain(Grants:PID2020-113320RB-I00,PID2020-113493RB-I00,RYC2021-034546-I and RYC2021-034764-I)the Catalan Agency for Management of University and Research Grants,Regional Government of Catalonia,Spain(Grants:2017-SGR-1229 and 2021-SGR-00900)the Seneca Foundation,Regional Government of Murcia,Spain(Grant:21935/PI/22)La Marato de TV3 Foundation(Grant:214/857-202039)and the Catalan Institution for Research and Advanced Studies(ICREA).
文摘Background Protamination and condensation of sperm chromatin as well as DNA integrity play an essential role during fertilization and embryo development.In some mammals,like pigs,ejaculates are emitted in three separate fractions:pre-sperm,sperm-rich(SRF)and post sperm-rich(PSRF).These fractions are known to vary in volume,sperm concentration and quality,as well as in the origin and composition of seminal plasma(SP),with differences being also observed within the SRF one.Yet,whether disparities in the DNA integrity and chromatin condensation and pro-tamination of their sperm exist has not been interrogated.Results This study determined chromatin protamination(Chromomycin A3 test,CMA_(3)),condensation(Dibromobi-mane test,DBB),and DNA integrity(Comet assay)in the pig sperm contained in the first 10 m L of the SRF(SRF-P1),the remaining portion of the sperm-rich fraction(SRF-P2),and the post sperm-rich fraction(PSRF).While chromatin protamination was found to be similar between the different ejaculate fractions(P>0.05),chromatin condensation was seen to be greater in SRF-P1 and SRF-P2 than in the PSRF(P=0.018 and P=0.004,respectively).Regarding DNA integrity,no differences between fractions were observed(P>0.05).As the SRF-P1 has the highest sperm concentra-tion and ejaculate fractions are known to differ in antioxidant composition,the oxidative stress index(OSi)in SP,calcu-lated as total oxidant activity divided by total antioxidant capacity,was tested and confirmed to be higher in the SRF-P1 than in SRF-P2 and PSRF(0.42±0.06 vs.0.23±0.09 and 0.08±0.00,respectively;P<0.01);this index,in addition,was observed to be correlated to the sperm concentration of each fraction(Rs=0.973;P<0.001).Conclusion While sperm DNA integrity was not found to differ between ejaculate fractions,SRF-P1 and SRF-P2 were observed to exhibit greater chromatin condensation than the PSRF.This could be related to the OSi of each fraction.
文摘The goal of this research is to develop a new,simplified analytical method known as the ARA-residue power series method for obtaining exact-approximate solutions employing Caputo type fractional partial differential equations(PDEs)with variable coefficient.ARA-transform is a robust and highly flexible generalization that unifies several existing transforms.The key concept behind this method is to create approximate series outcomes by implementing the ARA-transform and Taylor’s expansion.The process of finding approximations for dynamical fractional-order PDEs is challenging,but the ARA-residual power series technique magnifies this challenge by articulating the solution in a series pattern and then determining the series coefficients by employing the residual component and the limit at infinity concepts.This approach is effective and useful for solving a massive class of fractional-order PDEs.Five appealing implementations are taken into consideration to demonstrate the effectiveness of the projected technique in creating solitary series findings for the governing equations with variable coefficients.Additionally,several visualizations are drawn for different fractional-order values.Besides that,the estimated findings by the proposed technique are in close agreement with the exact outcomes.Finally,statistical analyses further validate the efficacy,dependability and steady interconnectivity of the suggested ARA-residue power series approach.
基金Supported by the Key Scientific Research Project of Universities in Henan Province,No.21A330004Natural Science Foundation in Henan Province,No.222300420265.
文摘BACKGROUND Hepatitis B(HB)and hepatitis C(HC)place the largest burden in China,and a goal of eliminating them as a major public health threat by 2030 has been set.Making more informed and accurate forecasts of their spread is essential for developing effective strategies,heightening the requirement for early warning to deal with such a major public health threat.AIM To monitor HB and HC epidemics by the design of a paradigmatic seasonal autoregressive fractionally integrated moving average(SARFIMA)for projections into 2030,and to compare the effectiveness with the seasonal autoregressive integrated moving average(SARIMA).METHODS Monthly HB and HC incidence cases in China were obtained from January 2004 to June 2023.Descriptive analysis and the Hodrick-Prescott method were employed to identify trends and seasonality.Two periods(from January 2004 to June 2022 and from January 2004 to December 2015,respectively)were used as the training sets to develop both models,while the remaining periods served as the test sets to evaluate the forecasting accuracy.RESULTS There were incidents of 23400874 HB cases and 3590867 HC cases from January 2004 to June 2023.Overall,HB remained steady[average annual percentage change(AAPC)=0.44,95%confidence interval(95%CI):-0.94-1.84]while HC was increasing(AAPC=8.91,95%CI:6.98-10.88),and both had a peak in March and a trough in February.In the 12-step-ahead HB forecast,the mean absolute deviation(15211.94),root mean square error(18762.94),mean absolute percentage error(0.17),mean error rate(0.15),and root mean square percentage error(0.25)under the best SARFIMA(3,0,0)(0,0.449,2)12 were smaller than those under the best SARIMA(3,0,0)(0,1,2)12(16867.71,20775.12,0.19,0.17,and 0.27,respectively).Similar results were also observed for the 90-step-ahead HB,12-step-ahead HC,and 90-step-ahead HC forecasts.The predicted HB incidents totaled 9865400(95%CI:7508093-12222709)cases and HC totaled 1659485(95%CI:856681-2462290)cases during 2023-2030.CONCLUSION Under current interventions,China faces enormous challenges to eliminate HB and HC epidemics by 2030,and effective strategies must be reinforced.The integration of SARFIMA into public health for the management of HB and HC epidemics can potentially result in more informed and efficient interventions,surpassing the capabilities of SARIMA.
文摘This paper discusses the existence and multiplicity of positive solutions for a class of singular boundary value problems of Hadamard fractional differential systems involving the p-Laplacian operator. First, for the sake of overcoming the singularity, sequences of approximate solutions to the boundary value problem are obtained by applying the fixed point index theory on the cone. Next, it is demonstrated that these sequences of approximate solutions are uniformly bounded and equicontinuous. The main results are then established through the Ascoli-Arzelà theorem. Ultimately, an instance is worked out to test and verify the validity of the main results.
文摘In this paper, we study the solutions for variable-order time-fractional diffusion equations. A three-point combined compact difference (CCD) method is used to discretize the spatial variables to achieve sixth-order accuracy, while the exponential-sum-approximation (ESA) is used to approximate the variable-order Caputo fractional derivative in the temporal direction, and a novel spatial sixth-order hybrid ESA-CCD method is implemented successfully. Finally, the accuracy of the proposed method is verified by numerical experiments.