In this article,we consider the diffusion equation with multi-term time-fractional derivatives.We first derive,by a subordination principle for the solution,that the solution is positive when the initial value is non-...In this article,we consider the diffusion equation with multi-term time-fractional derivatives.We first derive,by a subordination principle for the solution,that the solution is positive when the initial value is non-negative.As an application,we prove the uniqueness of solution to an inverse problem of determination of the temporally varying source term by integral type information in a subdomain.Finally,several numerical experiments are presented to show the accuracy and efficiency of the algorithm.展开更多
In this paper,a local discontinuous Galerkin(LDG)scheme for the time-fractional diffusion equation is proposed and analyzed.The Caputo time-fractional derivative(of orderα,with 0<α<1)is approximated by a finit...In this paper,a local discontinuous Galerkin(LDG)scheme for the time-fractional diffusion equation is proposed and analyzed.The Caputo time-fractional derivative(of orderα,with 0<α<1)is approximated by a finite difference method with an accuracy of order3-α,and the space discretization is based on the LDG method.For the finite difference method,we summarize and supplement some previous work by others,and apply it to the analysis of the convergence and stability of the proposed scheme.The optimal error estimate is obtained in the L2norm,indicating that the scheme has temporal(3-α)th-order accuracy and spatial(k+1)th-order accuracy,where k denotes the highest degree of a piecewise polynomial in discontinuous finite element space.The numerical results are also provided to verify the accuracy and efficiency of the considered scheme.展开更多
In this paper,finite difference schemes for solving time-space fractional diffusion equations in one dimension and two dimensions are proposed.The temporal derivative is in the Caputo-Hadamard sense for both cases.The...In this paper,finite difference schemes for solving time-space fractional diffusion equations in one dimension and two dimensions are proposed.The temporal derivative is in the Caputo-Hadamard sense for both cases.The spatial derivative for the one-dimensional equation is of Riesz definition and the two-dimensional spatial derivative is given by the fractional Laplacian.The schemes are proved to be unconditionally stable and convergent.The numerical results are in line with the theoretical analysis.展开更多
In this article,we consider to solve the inverse initial value problem for an inhomogeneous space-time fractional diffusion equation.This problem is ill-posed and the quasi-boundary value method is proposed to deal wi...In this article,we consider to solve the inverse initial value problem for an inhomogeneous space-time fractional diffusion equation.This problem is ill-posed and the quasi-boundary value method is proposed to deal with this inverse problem and obtain the series expression of the regularized solution for the inverse initial value problem.We prove the error estimates between the regularization solution and the exact solution by using an a priori regularization parameter and an a posteriori regularization parameter choice rule.Some numerical results in one-dimensional case and two-dimensional case show that our method is efficient and stable.展开更多
The exact solution of fractional diffusion model with a location-independent source term used in the study of the concentration of fission product in spherical uranium dioxide (U02) particle is built. The adsorption...The exact solution of fractional diffusion model with a location-independent source term used in the study of the concentration of fission product in spherical uranium dioxide (U02) particle is built. The adsorption effect of the fission product on the surface of the U02 particle and the delayed decay effect are also considered. The solution is given in terms of Mittag-Leffler function with finite Hankel integral transformation and Laplace transformation. At last, the reduced forms of the solution under some special physical conditions, which is used in nuclear engineering, are obtained and corresponding remarks are given to provide significant exact results to the concentration analysis of nuclear fission products in nuclear reactor.展开更多
Time fractional diffusion equation is usually used to describe the problems involving non-Markovian random walks. This kind of equation is obtained from the standard diffusion equation by replacing the first-order tim...Time fractional diffusion equation is usually used to describe the problems involving non-Markovian random walks. This kind of equation is obtained from the standard diffusion equation by replacing the first-order time derivative with a fractional derivative of order α∈(0, 1). In this paper, an implicit finite difference scheme for solving the time fractional diffusion equation with source term is presented and analyzed, where the fractional derivative is described in the Caputo sense. Stability and convergence of this scheme are rigorously established by a Fourier analysis. And using numerical experiments illustrates the accuracy and effectiveness of the scheme mentioned in this paper.展开更多
In this paper,we develop a novel fi nite-diff erence scheme for the time-Caputo and space-Riesz fractional diff usion equation with convergence order O(τ^2−α+h^2).The stability and convergence of the scheme are anal...In this paper,we develop a novel fi nite-diff erence scheme for the time-Caputo and space-Riesz fractional diff usion equation with convergence order O(τ^2−α+h^2).The stability and convergence of the scheme are analyzed by mathematical induction.Moreover,some numerical results are provided to verify the eff ectiveness of the developed diff erence scheme.展开更多
Anomalous transport in magnetically confined plasmas is investigated by radial fractional transport equations.It is shown that for fractional transport models,hollow density profiles are formed and uphill transports c...Anomalous transport in magnetically confined plasmas is investigated by radial fractional transport equations.It is shown that for fractional transport models,hollow density profiles are formed and uphill transports can be observed regardless of whether the fractional diffusion coefficients(FDCs)are radially dependent or not.When a radially dependent FDC<D_(α)(r)1 is imposed,compared with the case under=D_(α)(r)1.0,it is observed that the position of the peak of the density profile is closer to the core.Further,it is found that when FDCs at the positions of source injections increase,the peak values of density profiles decrease.The non-local effect becomes significant as the order of fractional derivative a 1 and causes the uphill transport.However,as a 2,the fractional diffusion model returns to the standard model governed by Fick’s law.展开更多
We consider the multidimensional space-fractional diffusion equations with spatially varying diffusivity and fractional order.Significant computational challenges are encoun-tered when solving these equations due to t...We consider the multidimensional space-fractional diffusion equations with spatially varying diffusivity and fractional order.Significant computational challenges are encoun-tered when solving these equations due to the kernel singularity in the fractional integral operator and the resulting dense discretized operators,which quickly become prohibitively expensive to handle because of their memory and arithmetic complexities.In this work,we present a singularity-aware discretization scheme that regularizes the singular integrals through a singularity subtraction technique adapted to the spatial variability of diffusiv-ity and fractional order.This regularization strategy is conveniently formulated as a sparse matrix correction that is added to the dense operator,and is applicable to different formula-tions of fractional diffusion equations.We also present a block low rank representation to handle the dense matrix representations,by exploiting the ability to approximate blocks of the resulting formally dense matrix by low rank factorizations.A Cholesky factorization solver operates directly on this representation using the low rank blocks as its atomic com-putational tiles,and achieves high performance on multicore hardware.Numerical results show that the singularity treatment is robust,substantially reduces discretization errors,and attains the first-order convergence rate allowed by the regularity of the solutions.They also show that considerable savings are obtained in storage(O(N^(1.5)))and computational cost(O(N^(2)))compared to dense factorizations.This translates to orders-of-magnitude savings in memory and time on multidimensional problems,and shows that the proposed methods offer practical tools for tackling large nonlocal fractional diffusion simulations.展开更多
In this paper,we develop novel local discontinuous Galerkin(LDG)methods for fractional diffusion equations with non-smooth solutions.We consider such problems,for which the solutions are not smooth at boundary,and the...In this paper,we develop novel local discontinuous Galerkin(LDG)methods for fractional diffusion equations with non-smooth solutions.We consider such problems,for which the solutions are not smooth at boundary,and therefore the traditional LDG methods with piecewise polynomial solutions suffer accuracy degeneracy.The novel LDG methods utilize a solution information enriched basis,simulate the problem on a paired special mesh,and achieve optimal order of accuracy.We analyze the L2 stability and optimal error estimate in L2-norm.Finally,numerical examples are presented for validating the theoretical conclusions.展开更多
After discretization by the finite volume method,the numerical solution of fractional diffusion equations leads to a linear system with the Toeplitz-like structure.The theoretical analysis gives sufficient conditions ...After discretization by the finite volume method,the numerical solution of fractional diffusion equations leads to a linear system with the Toeplitz-like structure.The theoretical analysis gives sufficient conditions to guarantee the positive-definite property of the discretized matrix.Moreover,we develop a class of positive-definite operator splitting iteration methods for the numerical solution of fractional diffusion equations,which is unconditionally convergent for any positive constant.Meanwhile,the iteration methods introduce a new preconditioner for Krylov subspace methods.Numerical experiments verify the convergence of the positive-definite operator splitting iteration methods and show the efficiency of the proposed preconditioner,compared with the existing approaches.展开更多
We study an indirect finite element approximation for two-sided space-fractional diffusion equations in one space dimension.By the representation formula of the solutions u(x)to the proposed variable coefficient model...We study an indirect finite element approximation for two-sided space-fractional diffusion equations in one space dimension.By the representation formula of the solutions u(x)to the proposed variable coefficient models in terms of v(x),the solutions to the constant coefficient analogues,we apply finite element methods for the constant coefficient fractional diffusion equations to solve for the approximations vh(x)to v(x)and then obtain the approximations uh(x)of u(x)by plugging vh(x)into the representation of u(x).Optimal-order convergence estimates of u(x)−uh(x)are proved in both L2 and Hα∕2 norms.Several numerical experiments are presented to demonstrate the sharpness of the derived error estimates.展开更多
Recently,Zhang and Ding developed a novel finite difference scheme for the time-Caputo and space-Riesz fractional diffusion equation with the convergence order 0(ι^(2-a)+h^(2))in Zhang and Ding(Commun.Appl.Math.Compu...Recently,Zhang and Ding developed a novel finite difference scheme for the time-Caputo and space-Riesz fractional diffusion equation with the convergence order 0(ι^(2-a)+h^(2))in Zhang and Ding(Commun.Appl.Math.Comput.2(1):57-72,2020).Unfortunately,they only gave the stability and convergence results for a∈(0,1)andβ∈[7/8+^(3)√621+48√87+19/8^(3)√621+48√87,2]In this paper,using a new analysis method,we find that the original difference scheme is unconditionally stable and convergent with orderΟ(ι^(2-a)+h^(2))for all a∈(0,1)andβ∈(1,2].Finally,some numerical examples are given to verify the correctness of the results.展开更多
In this paper, we use the Mittag-Leffler addition formula to solve the Green function of generalized time fractional diffusion equation in the whole plane and prove the convergence of the Green function.
In this paper, we propose a space-time finite element method for a time fractional diffusion interface problem. This method uses the low-order discontinuous Galerkin(DG) method and the Nitsche extended finite element ...In this paper, we propose a space-time finite element method for a time fractional diffusion interface problem. This method uses the low-order discontinuous Galerkin(DG) method and the Nitsche extended finite element method(Nitsche-XFEM) for temporal and spatial discretization, respectively. Sharp pointwise-in-time error estimates in graded temporal grids are derived, without any smoothness assumptions on the solution.Finally, three numerical examples are provided to verify the theoretical results.展开更多
In this work,a novel time-stepping L1 formula is developed for a hidden-memory variable-order Caputo’s fractional derivative with an initial singularity.This formula can obtain second-order accuracy and an error esti...In this work,a novel time-stepping L1 formula is developed for a hidden-memory variable-order Caputo’s fractional derivative with an initial singularity.This formula can obtain second-order accuracy and an error estimate is analyzed strictly.As an application,a fully discrete difference scheme is established for the initial-boundary value problem of a hidden-memory variable-order time fractional diffusion model.Numerical experiments are provided to support our theoretical results.展开更多
This paper deals with the numerical approximation for the time fractional diffusion problem with fractional dynamic boundary conditions.The well-posedness for the weak solutions is studied.A direct discontinuous Galer...This paper deals with the numerical approximation for the time fractional diffusion problem with fractional dynamic boundary conditions.The well-posedness for the weak solutions is studied.A direct discontinuous Galerkin approach is used in spatial direction under the uniform meshes,together with a second-order Alikhanov scheme is utilized in temporal direction on the graded mesh,and then the fully discrete scheme is constructed.Furthermore,the stability and the error estimate for the full scheme are analyzed in detail.Numerical experiments are also given to illustrate the effectiveness of the proposed method.展开更多
In this paper,we mainly study an inverse source problem of time fractional diffusion equation in a bounded domain with an over-specified terminal condition at a fixed time.A novel regularization method,which we call t...In this paper,we mainly study an inverse source problem of time fractional diffusion equation in a bounded domain with an over-specified terminal condition at a fixed time.A novel regularization method,which we call the exponential Tikhonov regularization method with a parameter γ,is proposed to solve the inverse source problem,and the corresponding convergence analysis is given under a-priori and a-posteriori regularization parameter choice rules.Whenγis less than or equal to zero,the optimal convergence rate can be achieved and it is independent of the value of γ.However,when γ is greater than zero,the optimal convergence rate depends on the value of γ which is related to the regularity of the unknown source.Finally,numerical experiments are conducted for showing the effectiveness of the proposed exponential regularization method.展开更多
In this paper, we consider the Cauchy problem of 3-dimensional tropical climate model. This model reflects the interaction and coupling among the barotropic mode u, the first baroclinic mode v of the velocity and the ...In this paper, we consider the Cauchy problem of 3-dimensional tropical climate model. This model reflects the interaction and coupling among the barotropic mode u, the first baroclinic mode v of the velocity and the temperature θ. The systems with fractional dissipation studied here may arise in the modeling of geophysical circumstances. Mathematically these systems allow simultaneous examination of a family of systems with various levels of regularization. The aim here is the global strong solution with the least dissipation. By energy estimate and delicate analysis, we prove the existence of global solution under three different cases: first, with the help of damping terms, the global strong solution of the system with Λ<sup>2a</sup>u, Λ<sup>2β</sup>v and Λ<sup>2γ</sup> θ for;and second, the global strong solution of the system for with damping terms;finally, the global strong solution of the system for without any damping terms, which improve the known existence theory for this system.展开更多
A high order finite difference-spectral method is derived for solving space fractional diffusion equations,by combining the second order finite difference method in time and the spectral Galerkin method in space.The s...A high order finite difference-spectral method is derived for solving space fractional diffusion equations,by combining the second order finite difference method in time and the spectral Galerkin method in space.The stability and error estimates of the temporal semidiscrete scheme are rigorously discussed,and the convergence order of the proposed method is proved to be O(τ2+Nα-m)in L2-norm,whereτ,N,αand m are the time step size,polynomial degree,fractional derivative index and regularity of the exact solution,respectively.Numerical experiments are carried out to demonstrate the theoretical analysis.展开更多
基金supported by National Natural Science Foundation of China(12271277)the Open Research Fund of Key Laboratory of Nonlinear Analysis&Applications(Central China Normal University),Ministry of Education,China.
文摘In this article,we consider the diffusion equation with multi-term time-fractional derivatives.We first derive,by a subordination principle for the solution,that the solution is positive when the initial value is non-negative.As an application,we prove the uniqueness of solution to an inverse problem of determination of the temporally varying source term by integral type information in a subdomain.Finally,several numerical experiments are presented to show the accuracy and efficiency of the algorithm.
基金supported by the State Key Program of National Natural Science Foundation of China(11931003)the National Natural Science Foundation of China(41974133)。
文摘In this paper,a local discontinuous Galerkin(LDG)scheme for the time-fractional diffusion equation is proposed and analyzed.The Caputo time-fractional derivative(of orderα,with 0<α<1)is approximated by a finite difference method with an accuracy of order3-α,and the space discretization is based on the LDG method.For the finite difference method,we summarize and supplement some previous work by others,and apply it to the analysis of the convergence and stability of the proposed scheme.The optimal error estimate is obtained in the L2norm,indicating that the scheme has temporal(3-α)th-order accuracy and spatial(k+1)th-order accuracy,where k denotes the highest degree of a piecewise polynomial in discontinuous finite element space.The numerical results are also provided to verify the accuracy and efficiency of the considered scheme.
基金the National Natural Science Foundation of China under Grant Nos.12271339 and 12201391.
文摘In this paper,finite difference schemes for solving time-space fractional diffusion equations in one dimension and two dimensions are proposed.The temporal derivative is in the Caputo-Hadamard sense for both cases.The spatial derivative for the one-dimensional equation is of Riesz definition and the two-dimensional spatial derivative is given by the fractional Laplacian.The schemes are proved to be unconditionally stable and convergent.The numerical results are in line with the theoretical analysis.
基金The project is supported by the National Natural Science Foundation of China(11561045,11961044)the Doctor Fund of Lan Zhou University of Technology.
文摘In this article,we consider to solve the inverse initial value problem for an inhomogeneous space-time fractional diffusion equation.This problem is ill-posed and the quasi-boundary value method is proposed to deal with this inverse problem and obtain the series expression of the regularized solution for the inverse initial value problem.We prove the error estimates between the regularization solution and the exact solution by using an a priori regularization parameter and an a posteriori regularization parameter choice rule.Some numerical results in one-dimensional case and two-dimensional case show that our method is efficient and stable.
基金Supported by the National S&T Major Project under Grant No.ZX06901
文摘The exact solution of fractional diffusion model with a location-independent source term used in the study of the concentration of fission product in spherical uranium dioxide (U02) particle is built. The adsorption effect of the fission product on the surface of the U02 particle and the delayed decay effect are also considered. The solution is given in terms of Mittag-Leffler function with finite Hankel integral transformation and Laplace transformation. At last, the reduced forms of the solution under some special physical conditions, which is used in nuclear engineering, are obtained and corresponding remarks are given to provide significant exact results to the concentration analysis of nuclear fission products in nuclear reactor.
基金Supported by the Discipline Construction and Teaching Research Fund of LUTcte(20140089)
文摘Time fractional diffusion equation is usually used to describe the problems involving non-Markovian random walks. This kind of equation is obtained from the standard diffusion equation by replacing the first-order time derivative with a fractional derivative of order α∈(0, 1). In this paper, an implicit finite difference scheme for solving the time fractional diffusion equation with source term is presented and analyzed, where the fractional derivative is described in the Caputo sense. Stability and convergence of this scheme are rigorously established by a Fourier analysis. And using numerical experiments illustrates the accuracy and effectiveness of the scheme mentioned in this paper.
基金the National Natural Science Foundation of China(no.11561060).
文摘In this paper,we develop a novel fi nite-diff erence scheme for the time-Caputo and space-Riesz fractional diff usion equation with convergence order O(τ^2−α+h^2).The stability and convergence of the scheme are analyzed by mathematical induction.Moreover,some numerical results are provided to verify the eff ectiveness of the developed diff erence scheme.
基金supported by the National MCF Energy R&D Program of China(No.2019YFE03090300)National Natural Science Foundation of China(No.11925501)Fundamental Research Funds for the Central Universities(No.DUT21GJ204)。
文摘Anomalous transport in magnetically confined plasmas is investigated by radial fractional transport equations.It is shown that for fractional transport models,hollow density profiles are formed and uphill transports can be observed regardless of whether the fractional diffusion coefficients(FDCs)are radially dependent or not.When a radially dependent FDC<D_(α)(r)1 is imposed,compared with the case under=D_(α)(r)1.0,it is observed that the position of the peak of the density profile is closer to the core.Further,it is found that when FDCs at the positions of source injections increase,the peak values of density profiles decrease.The non-local effect becomes significant as the order of fractional derivative a 1 and causes the uphill transport.However,as a 2,the fractional diffusion model returns to the standard model governed by Fick’s law.
基金support of the Extreme Computing Research Center at KAUST.
文摘We consider the multidimensional space-fractional diffusion equations with spatially varying diffusivity and fractional order.Significant computational challenges are encoun-tered when solving these equations due to the kernel singularity in the fractional integral operator and the resulting dense discretized operators,which quickly become prohibitively expensive to handle because of their memory and arithmetic complexities.In this work,we present a singularity-aware discretization scheme that regularizes the singular integrals through a singularity subtraction technique adapted to the spatial variability of diffusiv-ity and fractional order.This regularization strategy is conveniently formulated as a sparse matrix correction that is added to the dense operator,and is applicable to different formula-tions of fractional diffusion equations.We also present a block low rank representation to handle the dense matrix representations,by exploiting the ability to approximate blocks of the resulting formally dense matrix by low rank factorizations.A Cholesky factorization solver operates directly on this representation using the low rank blocks as its atomic com-putational tiles,and achieves high performance on multicore hardware.Numerical results show that the singularity treatment is robust,substantially reduces discretization errors,and attains the first-order convergence rate allowed by the regularity of the solutions.They also show that considerable savings are obtained in storage(O(N^(1.5)))and computational cost(O(N^(2)))compared to dense factorizations.This translates to orders-of-magnitude savings in memory and time on multidimensional problems,and shows that the proposed methods offer practical tools for tackling large nonlocal fractional diffusion simulations.
文摘In this paper,we develop novel local discontinuous Galerkin(LDG)methods for fractional diffusion equations with non-smooth solutions.We consider such problems,for which the solutions are not smooth at boundary,and therefore the traditional LDG methods with piecewise polynomial solutions suffer accuracy degeneracy.The novel LDG methods utilize a solution information enriched basis,simulate the problem on a paired special mesh,and achieve optimal order of accuracy.We analyze the L2 stability and optimal error estimate in L2-norm.Finally,numerical examples are presented for validating the theoretical conclusions.
基金This work was supported by the National Natural Science Foundation of China(No.11971354)The author Yi-Shu Du acknowledges the financial support from the China Scholarship Council(File No.201906260146).
文摘After discretization by the finite volume method,the numerical solution of fractional diffusion equations leads to a linear system with the Toeplitz-like structure.The theoretical analysis gives sufficient conditions to guarantee the positive-definite property of the discretized matrix.Moreover,we develop a class of positive-definite operator splitting iteration methods for the numerical solution of fractional diffusion equations,which is unconditionally convergent for any positive constant.Meanwhile,the iteration methods introduce a new preconditioner for Krylov subspace methods.Numerical experiments verify the convergence of the positive-definite operator splitting iteration methods and show the efficiency of the proposed preconditioner,compared with the existing approaches.
基金the OSD/ARO MURI Grant W911NF-15-1-0562the National Science Foundation under Grant DMS-1620194.
文摘We study an indirect finite element approximation for two-sided space-fractional diffusion equations in one space dimension.By the representation formula of the solutions u(x)to the proposed variable coefficient models in terms of v(x),the solutions to the constant coefficient analogues,we apply finite element methods for the constant coefficient fractional diffusion equations to solve for the approximations vh(x)to v(x)and then obtain the approximations uh(x)of u(x)by plugging vh(x)into the representation of u(x).Optimal-order convergence estimates of u(x)−uh(x)are proved in both L2 and Hα∕2 norms.Several numerical experiments are presented to demonstrate the sharpness of the derived error estimates.
基金supported by the National Natural Science Foundation of China(Nos.11901057 and 11561060).
文摘Recently,Zhang and Ding developed a novel finite difference scheme for the time-Caputo and space-Riesz fractional diffusion equation with the convergence order 0(ι^(2-a)+h^(2))in Zhang and Ding(Commun.Appl.Math.Comput.2(1):57-72,2020).Unfortunately,they only gave the stability and convergence results for a∈(0,1)andβ∈[7/8+^(3)√621+48√87+19/8^(3)√621+48√87,2]In this paper,using a new analysis method,we find that the original difference scheme is unconditionally stable and convergent with orderΟ(ι^(2-a)+h^(2))for all a∈(0,1)andβ∈(1,2].Finally,some numerical examples are given to verify the correctness of the results.
文摘In this paper, we use the Mittag-Leffler addition formula to solve the Green function of generalized time fractional diffusion equation in the whole plane and prove the convergence of the Green function.
基金supported by the China Postdoctoral Science Foundation (Grant No. 2019M662947)supported by the State Key Program of National Natural Science Foundation of China (Grant No. 11931003)National Natural Science Foundation of China (Grant Nos. 41974133 and 12126325)。
文摘In this paper, we propose a space-time finite element method for a time fractional diffusion interface problem. This method uses the low-order discontinuous Galerkin(DG) method and the Nitsche extended finite element method(Nitsche-XFEM) for temporal and spatial discretization, respectively. Sharp pointwise-in-time error estimates in graded temporal grids are derived, without any smoothness assumptions on the solution.Finally, three numerical examples are provided to verify the theoretical results.
基金supported by the National Natural Science Foundation of China(No.12201076)the China Postdoctoral Science Foundation(No.2023M732180)。
文摘In this work,a novel time-stepping L1 formula is developed for a hidden-memory variable-order Caputo’s fractional derivative with an initial singularity.This formula can obtain second-order accuracy and an error estimate is analyzed strictly.As an application,a fully discrete difference scheme is established for the initial-boundary value problem of a hidden-memory variable-order time fractional diffusion model.Numerical experiments are provided to support our theoretical results.
基金supported by the National Natural Science Foundation of China(Grant Nos.11771112,12071100)by the Fundamental Research Funds for the Central Universities(Grant No.2022FRFK060019).
文摘This paper deals with the numerical approximation for the time fractional diffusion problem with fractional dynamic boundary conditions.The well-posedness for the weak solutions is studied.A direct discontinuous Galerkin approach is used in spatial direction under the uniform meshes,together with a second-order Alikhanov scheme is utilized in temporal direction on the graded mesh,and then the fully discrete scheme is constructed.Furthermore,the stability and the error estimate for the full scheme are analyzed in detail.Numerical experiments are also given to illustrate the effectiveness of the proposed method.
基金supported by National Natural Science Foundation of China(11961002,11761007,11861007)Key Project of the Natural Science Foundation of Jiangxi Province(20212ACB201001).
文摘In this paper,we mainly study an inverse source problem of time fractional diffusion equation in a bounded domain with an over-specified terminal condition at a fixed time.A novel regularization method,which we call the exponential Tikhonov regularization method with a parameter γ,is proposed to solve the inverse source problem,and the corresponding convergence analysis is given under a-priori and a-posteriori regularization parameter choice rules.Whenγis less than or equal to zero,the optimal convergence rate can be achieved and it is independent of the value of γ.However,when γ is greater than zero,the optimal convergence rate depends on the value of γ which is related to the regularity of the unknown source.Finally,numerical experiments are conducted for showing the effectiveness of the proposed exponential regularization method.
文摘In this paper, we consider the Cauchy problem of 3-dimensional tropical climate model. This model reflects the interaction and coupling among the barotropic mode u, the first baroclinic mode v of the velocity and the temperature θ. The systems with fractional dissipation studied here may arise in the modeling of geophysical circumstances. Mathematically these systems allow simultaneous examination of a family of systems with various levels of regularization. The aim here is the global strong solution with the least dissipation. By energy estimate and delicate analysis, we prove the existence of global solution under three different cases: first, with the help of damping terms, the global strong solution of the system with Λ<sup>2a</sup>u, Λ<sup>2β</sup>v and Λ<sup>2γ</sup> θ for;and second, the global strong solution of the system for with damping terms;finally, the global strong solution of the system for without any damping terms, which improve the known existence theory for this system.
基金supported by National Center for Mathematics and Interdisciplinary Sciences,CASNational Natural Science Foundation of China (Grant Nos. 60931002 and 91130019)
文摘A high order finite difference-spectral method is derived for solving space fractional diffusion equations,by combining the second order finite difference method in time and the spectral Galerkin method in space.The stability and error estimates of the temporal semidiscrete scheme are rigorously discussed,and the convergence order of the proposed method is proved to be O(τ2+Nα-m)in L2-norm,whereτ,N,αand m are the time step size,polynomial degree,fractional derivative index and regularity of the exact solution,respectively.Numerical experiments are carried out to demonstrate the theoretical analysis.