期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
A Technique for Estimation of Box Dimension about Fractional Integral
1
作者 Ruhua Zhang 《Advances in Pure Mathematics》 2023年第10期714-724,共11页
This paper discusses further the roughness of Riemann-Liouville fractional integral on an arbitrary fractal continuous functions that follows Rfs. [1]. A novel method is used to reach a similar result for an arbitrary... This paper discusses further the roughness of Riemann-Liouville fractional integral on an arbitrary fractal continuous functions that follows Rfs. [1]. A novel method is used to reach a similar result for an arbitrary fractal function , where is the Riemann-Liouville fractional integral. Furthermore, a general resultis arrived at for 1-dimensional fractal functions such as with unbounded variation and(or) infinite lengths, which can infer all previous studies such as [2] [3]. This paper’s estimation reveals that the fractional integral does not increase the fractal dimension of f(x), i.e. fractional integration does not increase at least the fractal roughness. And the result has partly answered the fractal calculus conjecture and completely answered this conjecture for all 1-dimensional fractal function (Xiao has not answered). It is significant with a comparison to the past researches that the box dimension connection between a fractal function and its Riemann-Liouville integral has been carried out only for Weierstrass type and Besicovitch type functions, and at most Hlder continuous. Here the proof technique for Riemann-Liouville fractional integral is possibly of methodology to other fractional integrals. 展开更多
关键词 Upper Box dimension Riemann-Liouville fractional integral Fractal Continuous function Box dimension
下载PDF
FRACTIONAL INTEGRAL AND FRACTAL FUNCTION 被引量:1
2
作者 Sun Qingjie(孙青杰) +1 位作者 Su Weiyi(苏维宜) 《Numerical Mathematics A Journal of Chinese Universities(English Series)》 SCIE 2002年第1期70-75,共6页
In this paper, the relationship between Riemann-Liouville fractional integral and the box-counting dimension of graphs of fractal functions is discussed.
关键词 fractional integral factal function box-counting dimension.
下载PDF
Some Remarks on One-dimensional Functions and Their Riemann–Liouville Fractional Calculus 被引量:4
3
作者 Qi ZHANG 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2014年第3期517-524,共8页
A one-dimensional continuous function of unbounded variation on [0, 1] has been con- structed. The length of its graph is infinite, while part" of this function displays fractal features. The Box dimension of its Rie... A one-dimensional continuous function of unbounded variation on [0, 1] has been con- structed. The length of its graph is infinite, while part" of this function displays fractal features. The Box dimension of its Riemann-Liouville fractional integral has been calculated. 展开更多
关键词 Box dimension Hausdorff dimension fractional integral fractal function
原文传递
Katugampola分数阶积分的阶与Weierstrass函数的分形维数之间的关系(英文) 被引量:1
4
作者 张霞 彭文亮 《大学数学》 2019年第2期25-31,共7页
计算Weierstrass函数的Katugampola分数阶积分的分形维数,如盒维数、K-维数和P-维数.证明了Weierstrass函数的Katugampola分数阶积分的阶与Weierstrass函数的分形维数之间存在线性关系.
关键词 Katugampola分数阶积分 分形维数 WEIERSTRASS函数
下载PDF
Weierstrass函数的盒维数与Riemann-Liouville分数阶积分的阶之间联系更进一步的研究
5
作者 高鸿博 梁永顺 《理论数学》 2020年第11期1035-1043,共9页
本文中,我们更完整地对IE上Weierstrass函数分形维数与Riemann-Liouville分数阶微积分的阶之间进行了研究。即当α + v不再小于1时,Weierstrass函数的Riemann-Liouville分数阶积分的分形维数被证明是1。
关键词 分形维数 Riemann-Liouville分数阶积分 WEIERSTRASS函数 LIPSCHITZ函数 Holder条件
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部