The fractional integral operators with variable kernels are discussed.It is proved that if the kernel satisfies the Dini-condition,then the fractional integral operators with variable kernels are bounded from Hp(Rn) i...The fractional integral operators with variable kernels are discussed.It is proved that if the kernel satisfies the Dini-condition,then the fractional integral operators with variable kernels are bounded from Hp(Rn) into Lq(Rn) when 0<p≤1 and 1/q=1/p-α/n.The results in this paper improve the results obtained by Ding,Chen and Fan in 2002.展开更多
The authors discuss Lipschitz boundedness for a class of fractional multilinear operators with variable kernels. It is obtained that these operators are both Lipschitz bounded from L^p to H^q.
In this paper, we study the boundedness of the fractional integral operator and their commutator on Herz spaecs with two variable exponents . By using the properties of the variable exponents Lebesgue spaces, the boun...In this paper, we study the boundedness of the fractional integral operator and their commutator on Herz spaecs with two variable exponents . By using the properties of the variable exponents Lebesgue spaces, the boundedness of the fractional integral operator and their commutator generated by Lipschitz function is obtained on those Herz spaces.展开更多
In this paper, we study the boundedness of the fractional integral with variable kernel. Under some assumptions, we prove that such kind of operators is bounded from the variable exponent Herz-Morrey spaces to the var...In this paper, we study the boundedness of the fractional integral with variable kernel. Under some assumptions, we prove that such kind of operators is bounded from the variable exponent Herz-Morrey spaces to the variable exponent Herz-Morrey spaces.展开更多
In this paper,the authors introduce the central bounded oscillation space CBMO q (R n),let [b,T,α ] be the commutator generated by fractional integral operators with variable kernels and CBMO function,we establish th...In this paper,the authors introduce the central bounded oscillation space CBMO q (R n),let [b,T,α ] be the commutator generated by fractional integral operators with variable kernels and CBMO function,we establish the boundedness of [b,T,α ] on homogeneous Morrey-Herz spaces.展开更多
Let T be the singular integral operator with variable kernel, T* be the adjoint of T and T# be the pseudo-adjoint of T. Let TIT2 be the product of T1 and T2, T1 o T2 be the pseudo product of T1 and T2. In this paper,...Let T be the singular integral operator with variable kernel, T* be the adjoint of T and T# be the pseudo-adjoint of T. Let TIT2 be the product of T1 and T2, T1 o T2 be the pseudo product of T1 and T2. In this paper, we establish the boundedness for commutators of these operators and the fractional differentiation operator D^γ on the weighted Morrey spaces.展开更多
In this paper, we will discuss the behavior of a class of rough fractional integral operators on variable exponent Lebesgue spaces,and establish their boundedness from Lp1 (') (Rn) to Lp2() (Rn).
Let α≥ 0 and 0 〈 ρ ≤ n/2, the boundedness of hypersingular parameterized Marcinkiewicz integrals μΩ,α^ρ with variable kernels on Sobolev spaces Lα^ρ and HardySobolev spaces Hα^ρ is established.
In this paper,we first introduce Lσ1-(log L)σ2 conditions satisfied by the variable kernelsΩ(x,z) for 0≤σ1≤1 and σ2≥0.Under these new smoothness conditions,we will prove the boundedness properties of singu...In this paper,we first introduce Lσ1-(log L)σ2 conditions satisfied by the variable kernelsΩ(x,z) for 0≤σ1≤1 and σ2≥0.Under these new smoothness conditions,we will prove the boundedness properties of singular integral operators TΩ,fractional integrals TΩ,α and parametric Marcinkiewicz integrals μΩρ with variable kernels on the Hardy spaces Hp(Rn) and weak Hardy spaces WHP(Rn).Moreover,by using the interpolation arguments,we can get some corresponding results for the above integral operators with variable kernels on Hardy-Lorentz spaces Hp,q(Rn) for all p 〈 q 〈 ∞.展开更多
In this paper,the authors obtain the boundedness of the fractional integral operators with variable kernels on the variable exponent generalized weighted Morrey spaces and the variable exponent vanishing generalized w...In this paper,the authors obtain the boundedness of the fractional integral operators with variable kernels on the variable exponent generalized weighted Morrey spaces and the variable exponent vanishing generalized weighted Morrey spaces.And the corresponding commutators generated by BMO function are also considered.展开更多
We investigate the boundedness of singular and fractional integral operators on generalized Hardy spaces defined on spaces of homogeneous type, which are preduals of Campanato spaces with variable growth condition. To...We investigate the boundedness of singular and fractional integral operators on generalized Hardy spaces defined on spaces of homogeneous type, which are preduals of Campanato spaces with variable growth condition. To do this we introduce molecules with variable growth condition. Our results are new even for R^n case.展开更多
In this paper, we give a complete real-variable theory of local variable Hardy spaces.First, we present various real-variable characterization in terms of several local maximal functions.Next, the new atomic and the f...In this paper, we give a complete real-variable theory of local variable Hardy spaces.First, we present various real-variable characterization in terms of several local maximal functions.Next, the new atomic and the finite atomic decomposition for the local variable Hardy spaces are established. As an application, we also introduce the local variable Campanato space which is showed to be the dual space of the local variable Hardy spaces. Analogous to the homogeneous case, some equivalent definitions of the dual of local variable Hardy spaces are also considered. Finally, we show the boundedness of inhomogeneous Calderon–Zygmund singular integrals and local fractional integrals on local variable Hardy spaces and their duals.展开更多
Let A be a function with derivatives of order m and D γ A ∈■β (0 〈 β 〈 1, |γ| = m). The authors in the paper prove that if Ω(x, z) ∈ L ∞ (R n ) × L s (S n 1 ) (s ≥ n/(n β)) is homogenou...Let A be a function with derivatives of order m and D γ A ∈■β (0 〈 β 〈 1, |γ| = m). The authors in the paper prove that if Ω(x, z) ∈ L ∞ (R n ) × L s (S n 1 ) (s ≥ n/(n β)) is homogenous of degree zero and satisfies the mean value zero condition about the variable z, then both the generalized commutator for Marcinkiewicz type integral μ A Ω and its variation μ A Ω are bounded from L p (R n ) to L q (R n ), where 1 〈 p 〈 n/β and 1/q = 1/p β/n. The authors also consider the boundedness of μ A Ω and its variation μ A Ω on Hardy spaces.展开更多
Let Tk,1 be the singular integrals with variable Calderón-Zygmund kernels or ±Ⅰ(the identity operator), let Tk,2 and Tk,4 be the linear operators, and let Tk,3= ±Ⅰ.Denote the Toeplitz type operator by...Let Tk,1 be the singular integrals with variable Calderón-Zygmund kernels or ±Ⅰ(the identity operator), let Tk,2 and Tk,4 be the linear operators, and let Tk,3= ±Ⅰ.Denote the Toeplitz type operator by ■ where Mbf = bf, and Ⅰα is the fractional integral operator. In this paper, we investigate the boundedness of the operator on weighted Lebesgue space when b belongs to weighted Lipschitz space.展开更多
In this paper.the authors study the continuity properties of higher order commutators generated by the homogeneous fractional integral and BMO functions on certain Hardy spaces,weak Hardy spaces and Herz-type Hardy sp...In this paper.the authors study the continuity properties of higher order commutators generated by the homogeneous fractional integral and BMO functions on certain Hardy spaces,weak Hardy spaces and Herz-type Hardy spaces.展开更多
基金Supported by the973Project( G1 9990 75 1 0 5 ) and the National Natural Science Foundation of China( 1 0 2 71 0 1 6)
文摘The fractional integral operators with variable kernels are discussed.It is proved that if the kernel satisfies the Dini-condition,then the fractional integral operators with variable kernels are bounded from Hp(Rn) into Lq(Rn) when 0<p≤1 and 1/q=1/p-α/n.The results in this paper improve the results obtained by Ding,Chen and Fan in 2002.
基金Supported by Zhejiang Provincial Natural Science Foundation of China under Grant (No.M103069)supported by the Education Dept. of Zhejiang Province(20021022)
文摘The authors discuss Lipschitz boundedness for a class of fractional multilinear operators with variable kernels. It is obtained that these operators are both Lipschitz bounded from L^p to H^q.
文摘In this paper, we study the boundedness of the fractional integral operator and their commutator on Herz spaecs with two variable exponents . By using the properties of the variable exponents Lebesgue spaces, the boundedness of the fractional integral operator and their commutator generated by Lipschitz function is obtained on those Herz spaces.
文摘In this paper, we study the boundedness of the fractional integral with variable kernel. Under some assumptions, we prove that such kind of operators is bounded from the variable exponent Herz-Morrey spaces to the variable exponent Herz-Morrey spaces.
基金Supported by the Anhui Polytechnic University Foundation for Recruiting Talent(2011YQQ004)Supported by the Provincial Natural Science Research Project of Anhui Colleges(KJ2011A032)+1 种基金Supported by the Young Teachers Program of Anhui Province(2006jql042)Supported by the Grant for Younth of Anhui Polytechnic University (2010YQ047)
文摘In this paper,the authors introduce the central bounded oscillation space CBMO q (R n),let [b,T,α ] be the commutator generated by fractional integral operators with variable kernels and CBMO function,we establish the boundedness of [b,T,α ] on homogeneous Morrey-Herz spaces.
基金supported by NSF of China (Grant No. 11471033)NCET of China (Grant No. NCET-11-0574)the Fundamental Research Funds for the Central Universities (FRF-TP-12-006B)
文摘Let T be the singular integral operator with variable kernel, T* be the adjoint of T and T# be the pseudo-adjoint of T. Let TIT2 be the product of T1 and T2, T1 o T2 be the pseudo product of T1 and T2. In this paper, we establish the boundedness for commutators of these operators and the fractional differentiation operator D^γ on the weighted Morrey spaces.
基金Supported by the NSF of Zhejiang Province (Y6090681)the Education Dept.of Zhejiang Province(Y201120509)
文摘In this paper, we will discuss the behavior of a class of rough fractional integral operators on variable exponent Lebesgue spaces,and establish their boundedness from Lp1 (') (Rn) to Lp2() (Rn).
基金Supported by the National Natural Science Foundation of China(1057115610871173)
文摘Let α≥ 0 and 0 〈 ρ ≤ n/2, the boundedness of hypersingular parameterized Marcinkiewicz integrals μΩ,α^ρ with variable kernels on Sobolev spaces Lα^ρ and HardySobolev spaces Hα^ρ is established.
文摘In this paper,we first introduce Lσ1-(log L)σ2 conditions satisfied by the variable kernelsΩ(x,z) for 0≤σ1≤1 and σ2≥0.Under these new smoothness conditions,we will prove the boundedness properties of singular integral operators TΩ,fractional integrals TΩ,α and parametric Marcinkiewicz integrals μΩρ with variable kernels on the Hardy spaces Hp(Rn) and weak Hardy spaces WHP(Rn).Moreover,by using the interpolation arguments,we can get some corresponding results for the above integral operators with variable kernels on Hardy-Lorentz spaces Hp,q(Rn) for all p 〈 q 〈 ∞.
基金supported by the National Natural Science Foundation of China(No.11561062)Natural Science Foundation of Gansu Province(21JR1RM337).
文摘In this paper,the authors obtain the boundedness of the fractional integral operators with variable kernels on the variable exponent generalized weighted Morrey spaces and the variable exponent vanishing generalized weighted Morrey spaces.And the corresponding commutators generated by BMO function are also considered.
基金supported by Grant-in-Aid for Scientific Research (B) (Grant No. 15H03621), Japan Society for the Promotion of Science
文摘We investigate the boundedness of singular and fractional integral operators on generalized Hardy spaces defined on spaces of homogeneous type, which are preduals of Campanato spaces with variable growth condition. To do this we introduce molecules with variable growth condition. Our results are new even for R^n case.
基金Supported by National Natural Science Foundation of China (Grant No. 11901309)Natural Science Foundation of Jiangsu Province of China (Grant No. BK20180734)+1 种基金Natural Science Research of Jiangsu Higher Education Institutions of China (Grant No. 18KJB110022)Natural Science Foundation of Nanjing University of Posts and Telecommunications (Grant Nos. NY222168, NY219114)。
文摘In this paper, we give a complete real-variable theory of local variable Hardy spaces.First, we present various real-variable characterization in terms of several local maximal functions.Next, the new atomic and the finite atomic decomposition for the local variable Hardy spaces are established. As an application, we also introduce the local variable Campanato space which is showed to be the dual space of the local variable Hardy spaces. Analogous to the homogeneous case, some equivalent definitions of the dual of local variable Hardy spaces are also considered. Finally, we show the boundedness of inhomogeneous Calderon–Zygmund singular integrals and local fractional integrals on local variable Hardy spaces and their duals.
基金Supported by the National Natural Science Foundation of China (No. 10871024)Chinese Universities Scientific Fund (BUPT 2009RC0703)
文摘Let A be a function with derivatives of order m and D γ A ∈■β (0 〈 β 〈 1, |γ| = m). The authors in the paper prove that if Ω(x, z) ∈ L ∞ (R n ) × L s (S n 1 ) (s ≥ n/(n β)) is homogenous of degree zero and satisfies the mean value zero condition about the variable z, then both the generalized commutator for Marcinkiewicz type integral μ A Ω and its variation μ A Ω are bounded from L p (R n ) to L q (R n ), where 1 〈 p 〈 n/β and 1/q = 1/p β/n. The authors also consider the boundedness of μ A Ω and its variation μ A Ω on Hardy spaces.
文摘Let Tk,1 be the singular integrals with variable Calderón-Zygmund kernels or ±Ⅰ(the identity operator), let Tk,2 and Tk,4 be the linear operators, and let Tk,3= ±Ⅰ.Denote the Toeplitz type operator by ■ where Mbf = bf, and Ⅰα is the fractional integral operator. In this paper, we investigate the boundedness of the operator on weighted Lebesgue space when b belongs to weighted Lipschitz space.
基金supported by NSF of China(Grant:19971010)DPFIHE of China(Grant:98002703)National 973 Project of China
文摘In this paper.the authors study the continuity properties of higher order commutators generated by the homogeneous fractional integral and BMO functions on certain Hardy spaces,weak Hardy spaces and Herz-type Hardy spaces.