The design and analysis of a fractional order proportional integral deri-vate(FOPID)controller integrated with an adaptive neuro-fuzzy inference system(ANFIS)is proposed in this study.Afirst order plus delay time plant...The design and analysis of a fractional order proportional integral deri-vate(FOPID)controller integrated with an adaptive neuro-fuzzy inference system(ANFIS)is proposed in this study.Afirst order plus delay time plant model has been used to validate the ANFIS combined FOPID control scheme.In the pro-posed adaptive control structure,the intelligent ANFIS was designed such that it will dynamically adjust the fractional order factors(λandµ)of the FOPID(also known as PIλDµ)controller to achieve better control performance.When the plant experiences uncertainties like external load disturbances or sudden changes in the input parameters,the stability and robustness of the system can be achieved effec-tively with the proposed control scheme.Also,a modified structure of the FOPID controller has been used in the present system to enhance the dynamic perfor-mance of the controller.An extensive MATLAB software simulation study was made to verify the usefulness of the proposed control scheme.The study has been carried out under different operating conditions such as external disturbances and sudden changes in input parameters.The results obtained using the ANFIS-FOPID control scheme are also compared to the classical fractional order PIλDµand conventional PID control schemes to validate the advantages of the control-lers.The simulation results confirm the effectiveness of the ANFIS combined FOPID controller for the chosen plant model.Also,the proposed control scheme outperformed traditional control methods in various performance metrics such as rise time,settling time and error criteria.展开更多
Interacting The highest storage capacity of a circular tank makes it pop-ular in process industries.Because of the varying surface area of the cross-sec-tions of the tank,this two-tank level system has nonlinear chara...Interacting The highest storage capacity of a circular tank makes it pop-ular in process industries.Because of the varying surface area of the cross-sec-tions of the tank,this two-tank level system has nonlinear characteristics.Controlling theflow rate of liquid is one of the most difficult challenges in the production process.This proposed effort is critical in preventing time delays and errors by managing thefluid level.Several scholars have explored and explored ways to reduce the problem of nonlinearity,but their techniques have not yielded better results.Different types of controllers with various techniques are implemented by the proposed system.Sliding Mode Controller(SMC)with Fractional Order PID Controller based on Intelligent Adaptive Neuro-Fuzzy Infer-ence System(ANFIS)is a novel technique for liquid level regulation in an inter-connected spherical tank system to avoid interferences and achieve better performance in comparison of rise time,settling time,and overshoot decrease.Evaluating the simulated results acquired by the controller yields the efficiency of the proposed system.The simulated results were produced using MATLAB 2018 and the FOMCON toolbox.Finally,the performance of the conventional controller(FOPID,PID-SMC)and proposed ANFIS based SMC-FOPID control-lers are compared and analyzed the performance indices.展开更多
Active disturbance rejection controller(ADRC)uses tracking-differentiator(TD)to solve the contradiction between the overshoot and the rapid nature.Fractional order proportion integral derivative(PID)controller i...Active disturbance rejection controller(ADRC)uses tracking-differentiator(TD)to solve the contradiction between the overshoot and the rapid nature.Fractional order proportion integral derivative(PID)controller improves the control quality and expands the stable region of the system parameters.ADRC fractional order(ADRFO)PID controller is designed by combining ADRC with the fractional order PID and applied to reentry attitude control of hypersonic vehicle.Simulation results show that ADRFO PID controller has better control effect and greater stable region for the strong nonlinear model of hypersonic flight vehicle under the influence of external disturbance,and has stronger robustness against the perturbation in system parameters.展开更多
Due to attractive features,including high efficiency,low device stress,and ability to boost voltage,a Vienna rectifier is commonly employed as a battery charger in an electric vehicle(EV).However,the 6k±1 harmoni...Due to attractive features,including high efficiency,low device stress,and ability to boost voltage,a Vienna rectifier is commonly employed as a battery charger in an electric vehicle(EV).However,the 6k±1 harmonics in the acside current of the Vienna rectifier deteriorate theTHDof the ac current,thus lowering the power factor.Therefore,the current closed-loop for suppressing 6k±1 harmonics is essential tomeet the desired total harmonic distortion(THD).Fast repetitive control(FRC)is generally adopted;however,the deviation of power grid frequency causes delay link in the six frequency fast repetitive control to become non-integer and the tracking performance to deteriorate.This paper presents the detailed parameter design and calculation of fractional order fast repetitive controller(FOFRC)for the non-integer delay link.The finite polynomial approximates the non-integer delay link through the Lagrange interpolation method.By comparing the frequency characteristics of traditional repetitive control,the effectiveness of the FOFRC strategy is verified.Finally,simulation and experiment validate the steadystate performance and harmonics suppression ability of FOFRC.展开更多
The current investigations provide the solutions of the nonlinear fractional order mathematical rape and its controlmodel using the strength of artificial neural networks(ANNs)along with the Levenberg-Marquardt backpr...The current investigations provide the solutions of the nonlinear fractional order mathematical rape and its controlmodel using the strength of artificial neural networks(ANNs)along with the Levenberg-Marquardt backpropagation approach(LMBA),i.e.,artificial neural networks-Levenberg-Marquardt backpropagation approach(ANNs-LMBA).The fractional order investigations have been presented to find more realistic results of the mathematical form of the rape and its control model.The differential mathematical form of the nonlinear fractional order mathematical rape and its control model has six classes:susceptible native girls,infected immature girls,susceptible knowledgeable girls,infected knowledgeable girls,susceptible rapist population and infective rapist population.The rape and its control differential system using three different fractional order values is authenticated to perform the correctness of ANNs-LMBA.The data is used to present the rape and its control differential system is designated as 70%for training,14%for authorization and 16%for testing.The obtained performances of the ANNs-LMBA are compared with the dataset of the Adams-Bashforth-Moulton scheme.To substantiate the consistency,aptitude,validity,exactness,and capability of the LMBA neural networks,the obtained numerical values are provided using the state transitions(STs),correlation,regression,mean square error(MSE)and error histograms(EHs).展开更多
In this paper, fractional order PI(FOPI) control is developed for speed control of permanent magnet synchronous motor(PMSM). Designing the parameters for FOPI controller is a challenging task, especially for nonlinear...In this paper, fractional order PI(FOPI) control is developed for speed control of permanent magnet synchronous motor(PMSM). Designing the parameters for FOPI controller is a challenging task, especially for nonlinear systems like PMSM.All three PI controllers in the conventional vector controlled speed drive are replaced by FOPI controllers. Design of these FOPI controllers is based on the locally linearized model of PMSM around an operating point. This operating point changes with the load torque. The novelty of the work reported here is in use of Non Linear Disturbance Observer(NLDO) to estimate load torque to obtain this new operating point. All three FOPI controllers are then designed adaptively using this new operating point. The scheme is tested on simulation using MATLAB/SIMULINK and results are presented.展开更多
A new discretization scheme is proposed for the design of a fractional order PID controller. In the design of a fractional order controller the interest is mainly focused on the s-domain, but there exists a difficult ...A new discretization scheme is proposed for the design of a fractional order PID controller. In the design of a fractional order controller the interest is mainly focused on the s-domain, but there exists a difficult problem in the s-domain that needs to be solved, i.e. how to calculate fractional derivatives and integrals efficiently and quickly. Our scheme adopts the time domain that is well suited for Z-transform analysis and digital implementation. The main idea of the scheme is based on the definition of Grünwald-Letnicov fractional calculus. In this case some limited terms of the definition are taken so that it is much easier and faster to calculate fractional derivatives and integrals in the time domain or z-domain without loss much of the precision. Its effectiveness is illustrated by discretization of half-order fractional differential and integral operators compared with that of the analytical scheme. An example of designing fractional order digital controllers is included for illustration, in which different fractional order PID controllers are designed for the control of a nonlinear dynamic system containing one of the four different kinds of nonlinear blocks: saturation, deadzone, hysteresis, and relay.展开更多
The aim of this paper is to employ fractional order proportional integral derivative(FO-PID)controller and integer order PID controller to control the position of the levitated object in a magnetic levitation system(M...The aim of this paper is to employ fractional order proportional integral derivative(FO-PID)controller and integer order PID controller to control the position of the levitated object in a magnetic levitation system(MLS),which is inherently nonlinear and unstable system.The proposal is to deploy discrete optimal pole-zero approximation method for realization of digital fractional order controller.An approach of phase shaping by slope cancellation of asymptotic phase plots for zeros and poles within given bandwidth is explored.The controller parameters are tuned using dynamic particle swarm optimization(d PSO)technique.Effectiveness of the proposed control scheme is verified by simulation and experimental results.The performance of realized digital FO-PID controller has been compared with that of the integer order PID controllers.It is observed that effort required in fractional order control is smaller as compared with its integer counterpart for obtaining the same system performance.展开更多
A new calculation method of fractional order [proportional integral ]( FO [PI ]) controller parameters is proposed. And the systematic design schemes of fractional order [proportional integral ]( FO[PI]) controllers b...A new calculation method of fractional order [proportional integral ]( FO [PI ]) controller parameters is proposed. And the systematic design schemes of fractional order [proportional integral ]( FO[PI]) controllers based on vector method are discussed in detail. The FO[PI]controller parameters algorithm based on the vector method can be programmed in MATLAB. According to MATLAB programs of the FO[PI]controller parameters algorithm,the FO[PI] controllers are designed following the different phase margins,different gain crossover frequency and different plants,respectively. From the simulation results,the calculated parameters based on MATLAB program is unique and the designed FO[PI] controllers work efficiently.展开更多
We present a new fractional-order controller based on the Lyapunov stability theory and propose a control method which can control fractional chaotic and hyperchaotic systems whether systems are commensurate or incomm...We present a new fractional-order controller based on the Lyapunov stability theory and propose a control method which can control fractional chaotic and hyperchaotic systems whether systems are commensurate or incommensurate. The proposed control method is universal, simple, and theoretically rigorous. Numerical simulations are given for several fractional chaotic and hyperchaotic systems to verify the effectiveness and the universality of the proposed control method.展开更多
Normally all real world process in a process industry will have time delay.For those processes with time delays,obtaining satisfactory closed loop performances becomes very difficult.In this work,three interacting cyl...Normally all real world process in a process industry will have time delay.For those processes with time delays,obtaining satisfactory closed loop performances becomes very difficult.In this work,three interacting cylindrical tank process is considered for study and the objective of the work is to compensate for time delays using smith predictor structure and to maintain the level in the third tank.Input/Output data is generated for the three interacting tank process.It is approximated as Integer First Order Plus Dead Time system(IFOPDT)and Fractional First Order Plus Dead Time system(FFOPDT).Smith predictor based fractional order Proportional Integral controller and Integer order Proportional Integral controller is designed for the IFOPDT and FFOPDT model using frequency response technique and their closed loop performance indices are compared and tabulated.The servo and regulatory responses are simulated using Matlab/Simulink.展开更多
This paper proposes a methodology for the quantitative robustness evaluation of PID controllers employed in a DC motor. The robustness analysis is performed employing a 2~3 factorial experimental design for a fraction...This paper proposes a methodology for the quantitative robustness evaluation of PID controllers employed in a DC motor. The robustness analysis is performed employing a 2~3 factorial experimental design for a fractional order proportional integral and derivative controller(FOPID), integer order proportional integral and derivative controller(IOPID)and the Skogestad internal model control controller(SIMC). The factors assumed in experiment are the presence of random noise,external disturbances in the system input and variable load. As output variables, the experimental design employs the system step response and the controller action. Practical implementation of FOPID and IOPID controllers uses the MATLAB stateflow toolbox and a NI data acquisition system. Results of the robustness analysis show that the FOPID controller has a better performance and robust stability against the experiment factors.展开更多
This paper provides a novel method to synchronize uncertain fractional-order chaotic systems with external disturbance via fractional terminal sliding mode control. Based on Lyapunov stability theory, a new fractional...This paper provides a novel method to synchronize uncertain fractional-order chaotic systems with external disturbance via fractional terminal sliding mode control. Based on Lyapunov stability theory, a new fractional-order switching manifold is proposed, and in order to ensure the occurrence of sliding motion in finite time, a corresponding sliding mode control law is designed. The proposed control scheme is applied to synchronize the fractional-order Lorenz chaotic system and fractional-order Chen chaotic system with uncertainty and external disturbance parameters. The simulation results show the applicability and efficiency of the proposed scheme.展开更多
Two different sliding mode controllers for a fractional order unified chaotic system are presented. The controller for an integer-order unified chaotic system is substituted directly into the fractional-order counterp...Two different sliding mode controllers for a fractional order unified chaotic system are presented. The controller for an integer-order unified chaotic system is substituted directly into the fractional-order counterpart system, and the fractional-order system can be made asymptotically stable by this controller. By proving the existence of a sliding manifold containing fractional integral, the controller for a fractional-order system is obtained, which can stabilize it. A comparison between these different methods shows that the performance of a sliding mode controller with a fractional integral is more robust than the other for controlling a fractional order unified chaotic system.展开更多
This paper deals with analyzing a newly introduced method for tuning of fractional order [proportional derivative](FO[PD]) controllers to be used in motion control. By using this tuning method, not only the phase marg...This paper deals with analyzing a newly introduced method for tuning of fractional order [proportional derivative](FO[PD]) controllers to be used in motion control. By using this tuning method, not only the phase margin and gain crossover frequency are adjustable, but also robustness to variations in the plant time-constant is guaranteed. Conditions on the values of control specifications(desired phase margin and gain crossover frequency) for solution existence in this tuning method are found. Also, the number of solutions is analytically determined in this study. Moreover, experimental verifications are presented to indicate the applicability of the obtained results.展开更多
This paper deals with the study of fractional order system tuning method based on Factional Order Proportional Integral Derivative( FOPID) controller in allusion to the nonlinear characteristics and fractional order m...This paper deals with the study of fractional order system tuning method based on Factional Order Proportional Integral Derivative( FOPID) controller in allusion to the nonlinear characteristics and fractional order mathematical model of bioengineering systems. The main contents include the design of FOPID controller and the simulation for bioengineering systems. The simulation results show that the tuning method of fractional order system based on the FOPID controller outperforms the fractional order system based on Fractional Order Proportional Integral( FOPI) controller. As it can enhance control character and improve the robustness of the system.展开更多
To deal with stabilizing of nonlinear affine fractional order systems subject to time varying delays,two methods for finding an appropriate pseudo state feedback controller are discussed.In the first method,using the ...To deal with stabilizing of nonlinear affine fractional order systems subject to time varying delays,two methods for finding an appropriate pseudo state feedback controller are discussed.In the first method,using the Mittag-Lefler function,Laplace transform and Gronwall inequality,a linear stabilizing controller is derived,which uses the fractional order of the delayed system and the upper bound of system nonlinear functions.In the second method,at first a sufficient stability condition for the delayed system is given in the form of a simple linear matrix inequality(LMI)which can easily be solved.Then,on the basis of this result,a stabilizing pseudo-state feedback controller is designed in which the controller gain matrix is easily computed by solving an LMI in terms of delay bounds.Simulation results show the effectiveness of the proposed methods.展开更多
Fractional order controllers have been used intensively over the last decades in controlling different types of processes. The main methods for tuning such controllers are based on a frequency domain approach followed...Fractional order controllers have been used intensively over the last decades in controlling different types of processes. The main methods for tuning such controllers are based on a frequency domain approach followed by optimization routine, generally in the form of the Matlab fminsearch, but also evolving to more complex routines, such as the genetic algorithms. An alternative to these time consuming optimization routines, a simple graphical method has been proposed. However, these graphical methods are not suitable for all combinations of the imposed performance specifications. To preserve their simplicity, but also to make these graphical methods generally applicable, a modified graphical method using a very straightforward and simple optimization routine is proposed within the paper. Two case studies are presented, for tuning fractional order PI and PD controllers.展开更多
In this paper we investigate the synchronization of a class of three-dimensional fractional-order chaotic systems. Based on the Lyapunov stability theory and adaptive control technique, a single adaptive-feedback cont...In this paper we investigate the synchronization of a class of three-dimensional fractional-order chaotic systems. Based on the Lyapunov stability theory and adaptive control technique, a single adaptive-feedback controller is developed to synchronize a class of fractional-order chaotic systems. The presented controller which only contains a single driving variable is simple both in design and in implementation. Numerical simulation and circuit experimental results for fractional-order chaotic system are provided to illustrate the effectiveness of the proposed scheme.展开更多
基金The author extends their appreciation to the Deputyship for Research&Innovation,Ministry of Education in Saudi Arabia for funding this research work through the project number(IFPSAU-2021/01/18128).
文摘The design and analysis of a fractional order proportional integral deri-vate(FOPID)controller integrated with an adaptive neuro-fuzzy inference system(ANFIS)is proposed in this study.Afirst order plus delay time plant model has been used to validate the ANFIS combined FOPID control scheme.In the pro-posed adaptive control structure,the intelligent ANFIS was designed such that it will dynamically adjust the fractional order factors(λandµ)of the FOPID(also known as PIλDµ)controller to achieve better control performance.When the plant experiences uncertainties like external load disturbances or sudden changes in the input parameters,the stability and robustness of the system can be achieved effec-tively with the proposed control scheme.Also,a modified structure of the FOPID controller has been used in the present system to enhance the dynamic perfor-mance of the controller.An extensive MATLAB software simulation study was made to verify the usefulness of the proposed control scheme.The study has been carried out under different operating conditions such as external disturbances and sudden changes in input parameters.The results obtained using the ANFIS-FOPID control scheme are also compared to the classical fractional order PIλDµand conventional PID control schemes to validate the advantages of the control-lers.The simulation results confirm the effectiveness of the ANFIS combined FOPID controller for the chosen plant model.Also,the proposed control scheme outperformed traditional control methods in various performance metrics such as rise time,settling time and error criteria.
文摘Interacting The highest storage capacity of a circular tank makes it pop-ular in process industries.Because of the varying surface area of the cross-sec-tions of the tank,this two-tank level system has nonlinear characteristics.Controlling theflow rate of liquid is one of the most difficult challenges in the production process.This proposed effort is critical in preventing time delays and errors by managing thefluid level.Several scholars have explored and explored ways to reduce the problem of nonlinearity,but their techniques have not yielded better results.Different types of controllers with various techniques are implemented by the proposed system.Sliding Mode Controller(SMC)with Fractional Order PID Controller based on Intelligent Adaptive Neuro-Fuzzy Infer-ence System(ANFIS)is a novel technique for liquid level regulation in an inter-connected spherical tank system to avoid interferences and achieve better performance in comparison of rise time,settling time,and overshoot decrease.Evaluating the simulated results acquired by the controller yields the efficiency of the proposed system.The simulated results were produced using MATLAB 2018 and the FOMCON toolbox.Finally,the performance of the conventional controller(FOPID,PID-SMC)and proposed ANFIS based SMC-FOPID control-lers are compared and analyzed the performance indices.
基金Supported by the Innovation Foundation of Aerospace Science and Technology(CASC200902)~~
文摘Active disturbance rejection controller(ADRC)uses tracking-differentiator(TD)to solve the contradiction between the overshoot and the rapid nature.Fractional order proportion integral derivative(PID)controller improves the control quality and expands the stable region of the system parameters.ADRC fractional order(ADRFO)PID controller is designed by combining ADRC with the fractional order PID and applied to reentry attitude control of hypersonic vehicle.Simulation results show that ADRFO PID controller has better control effect and greater stable region for the strong nonlinear model of hypersonic flight vehicle under the influence of external disturbance,and has stronger robustness against the perturbation in system parameters.
基金funded by the Xi’an Science and Technology Plan Project,Grant No.2020KJRC001the Xi’an Science and Technology Plan Project,Grant No.21XJZZ0003。
文摘Due to attractive features,including high efficiency,low device stress,and ability to boost voltage,a Vienna rectifier is commonly employed as a battery charger in an electric vehicle(EV).However,the 6k±1 harmonics in the acside current of the Vienna rectifier deteriorate theTHDof the ac current,thus lowering the power factor.Therefore,the current closed-loop for suppressing 6k±1 harmonics is essential tomeet the desired total harmonic distortion(THD).Fast repetitive control(FRC)is generally adopted;however,the deviation of power grid frequency causes delay link in the six frequency fast repetitive control to become non-integer and the tracking performance to deteriorate.This paper presents the detailed parameter design and calculation of fractional order fast repetitive controller(FOFRC)for the non-integer delay link.The finite polynomial approximates the non-integer delay link through the Lagrange interpolation method.By comparing the frequency characteristics of traditional repetitive control,the effectiveness of the FOFRC strategy is verified.Finally,simulation and experiment validate the steadystate performance and harmonics suppression ability of FOFRC.
文摘The current investigations provide the solutions of the nonlinear fractional order mathematical rape and its controlmodel using the strength of artificial neural networks(ANNs)along with the Levenberg-Marquardt backpropagation approach(LMBA),i.e.,artificial neural networks-Levenberg-Marquardt backpropagation approach(ANNs-LMBA).The fractional order investigations have been presented to find more realistic results of the mathematical form of the rape and its control model.The differential mathematical form of the nonlinear fractional order mathematical rape and its control model has six classes:susceptible native girls,infected immature girls,susceptible knowledgeable girls,infected knowledgeable girls,susceptible rapist population and infective rapist population.The rape and its control differential system using three different fractional order values is authenticated to perform the correctness of ANNs-LMBA.The data is used to present the rape and its control differential system is designated as 70%for training,14%for authorization and 16%for testing.The obtained performances of the ANNs-LMBA are compared with the dataset of the Adams-Bashforth-Moulton scheme.To substantiate the consistency,aptitude,validity,exactness,and capability of the LMBA neural networks,the obtained numerical values are provided using the state transitions(STs),correlation,regression,mean square error(MSE)and error histograms(EHs).
文摘In this paper, fractional order PI(FOPI) control is developed for speed control of permanent magnet synchronous motor(PMSM). Designing the parameters for FOPI controller is a challenging task, especially for nonlinear systems like PMSM.All three PI controllers in the conventional vector controlled speed drive are replaced by FOPI controllers. Design of these FOPI controllers is based on the locally linearized model of PMSM around an operating point. This operating point changes with the load torque. The novelty of the work reported here is in use of Non Linear Disturbance Observer(NLDO) to estimate load torque to obtain this new operating point. All three FOPI controllers are then designed adaptively using this new operating point. The scheme is tested on simulation using MATLAB/SIMULINK and results are presented.
文摘A new discretization scheme is proposed for the design of a fractional order PID controller. In the design of a fractional order controller the interest is mainly focused on the s-domain, but there exists a difficult problem in the s-domain that needs to be solved, i.e. how to calculate fractional derivatives and integrals efficiently and quickly. Our scheme adopts the time domain that is well suited for Z-transform analysis and digital implementation. The main idea of the scheme is based on the definition of Grünwald-Letnicov fractional calculus. In this case some limited terms of the definition are taken so that it is much easier and faster to calculate fractional derivatives and integrals in the time domain or z-domain without loss much of the precision. Its effectiveness is illustrated by discretization of half-order fractional differential and integral operators compared with that of the analytical scheme. An example of designing fractional order digital controllers is included for illustration, in which different fractional order PID controllers are designed for the control of a nonlinear dynamic system containing one of the four different kinds of nonlinear blocks: saturation, deadzone, hysteresis, and relay.
基金supported by the Board of Research in Nuclear Sciences of the Department of Atomic Energy,India(2012/36/69-BRNS/2012)
文摘The aim of this paper is to employ fractional order proportional integral derivative(FO-PID)controller and integer order PID controller to control the position of the levitated object in a magnetic levitation system(MLS),which is inherently nonlinear and unstable system.The proposal is to deploy discrete optimal pole-zero approximation method for realization of digital fractional order controller.An approach of phase shaping by slope cancellation of asymptotic phase plots for zeros and poles within given bandwidth is explored.The controller parameters are tuned using dynamic particle swarm optimization(d PSO)technique.Effectiveness of the proposed control scheme is verified by simulation and experimental results.The performance of realized digital FO-PID controller has been compared with that of the integer order PID controllers.It is observed that effort required in fractional order control is smaller as compared with its integer counterpart for obtaining the same system performance.
基金Sponsored by the Basic Research Program of Jilin Provincial Science & Technology Department(Grant No.20130102025JC)
文摘A new calculation method of fractional order [proportional integral ]( FO [PI ]) controller parameters is proposed. And the systematic design schemes of fractional order [proportional integral ]( FO[PI]) controllers based on vector method are discussed in detail. The FO[PI]controller parameters algorithm based on the vector method can be programmed in MATLAB. According to MATLAB programs of the FO[PI]controller parameters algorithm,the FO[PI] controllers are designed following the different phase margins,different gain crossover frequency and different plants,respectively. From the simulation results,the calculated parameters based on MATLAB program is unique and the designed FO[PI] controllers work efficiently.
基金Project supported by the National Natural Science Foundation of China (Grant No. 11171238), the Science Found of Sichuan University of Science and Engineering (Grant Nos. 2012PY17 and 2014PY06), the Fund from Artificial Intelligence Key Laboratory of Sichuan Province (Grant No. 2014RYJ05), and the Opening Project of Sichuan Province University Key Laborstory of Bridge Non-destruction Detecting and Engineering Computing (Grant No. 2013QYJ01).
文摘We present a new fractional-order controller based on the Lyapunov stability theory and propose a control method which can control fractional chaotic and hyperchaotic systems whether systems are commensurate or incommensurate. The proposed control method is universal, simple, and theoretically rigorous. Numerical simulations are given for several fractional chaotic and hyperchaotic systems to verify the effectiveness and the universality of the proposed control method.
文摘Normally all real world process in a process industry will have time delay.For those processes with time delays,obtaining satisfactory closed loop performances becomes very difficult.In this work,three interacting cylindrical tank process is considered for study and the objective of the work is to compensate for time delays using smith predictor structure and to maintain the level in the third tank.Input/Output data is generated for the three interacting tank process.It is approximated as Integer First Order Plus Dead Time system(IFOPDT)and Fractional First Order Plus Dead Time system(FFOPDT).Smith predictor based fractional order Proportional Integral controller and Integer order Proportional Integral controller is designed for the IFOPDT and FFOPDT model using frequency response technique and their closed loop performance indices are compared and tabulated.The servo and regulatory responses are simulated using Matlab/Simulink.
文摘This paper proposes a methodology for the quantitative robustness evaluation of PID controllers employed in a DC motor. The robustness analysis is performed employing a 2~3 factorial experimental design for a fractional order proportional integral and derivative controller(FOPID), integer order proportional integral and derivative controller(IOPID)and the Skogestad internal model control controller(SIMC). The factors assumed in experiment are the presence of random noise,external disturbances in the system input and variable load. As output variables, the experimental design employs the system step response and the controller action. Practical implementation of FOPID and IOPID controllers uses the MATLAB stateflow toolbox and a NI data acquisition system. Results of the robustness analysis show that the FOPID controller has a better performance and robust stability against the experiment factors.
基金Supported by National Natural Science Foundation of China (61273260), Specialized Research Fund for the Doctoral Program of Higher Education of China (20121333120010), Natural Scientific Research Foundation of the Higher Education Institutions of Hebei Province (2010t65), the Major Program of the National Natural Science Foundation of China (61290322), Foundation of Key Labora- tory of System Control and Information Processing, Ministry of Education (SCIP2012008), and Science and Technology Research and Development Plan of Qinhuangdao City (2012021A041)
基金Project supported by the Fundamental Research Funds for the Central Universities of China (Grant No. 11MG49)
文摘This paper provides a novel method to synchronize uncertain fractional-order chaotic systems with external disturbance via fractional terminal sliding mode control. Based on Lyapunov stability theory, a new fractional-order switching manifold is proposed, and in order to ensure the occurrence of sliding motion in finite time, a corresponding sliding mode control law is designed. The proposed control scheme is applied to synchronize the fractional-order Lorenz chaotic system and fractional-order Chen chaotic system with uncertainty and external disturbance parameters. The simulation results show the applicability and efficiency of the proposed scheme.
基金supported by the National Natural Science Foundation of China (Grant No. 60702023)the Natural Science Foundation of Zhejiang Province, China (Grant No. R1110443)
文摘Two different sliding mode controllers for a fractional order unified chaotic system are presented. The controller for an integer-order unified chaotic system is substituted directly into the fractional-order counterpart system, and the fractional-order system can be made asymptotically stable by this controller. By proving the existence of a sliding manifold containing fractional integral, the controller for a fractional-order system is obtained, which can stabilize it. A comparison between these different methods shows that the performance of a sliding mode controller with a fractional integral is more robust than the other for controlling a fractional order unified chaotic system.
基金supported by the Iran National Science Foundation(INSF)
文摘This paper deals with analyzing a newly introduced method for tuning of fractional order [proportional derivative](FO[PD]) controllers to be used in motion control. By using this tuning method, not only the phase margin and gain crossover frequency are adjustable, but also robustness to variations in the plant time-constant is guaranteed. Conditions on the values of control specifications(desired phase margin and gain crossover frequency) for solution existence in this tuning method are found. Also, the number of solutions is analytically determined in this study. Moreover, experimental verifications are presented to indicate the applicability of the obtained results.
文摘This paper deals with the study of fractional order system tuning method based on Factional Order Proportional Integral Derivative( FOPID) controller in allusion to the nonlinear characteristics and fractional order mathematical model of bioengineering systems. The main contents include the design of FOPID controller and the simulation for bioengineering systems. The simulation results show that the tuning method of fractional order system based on the FOPID controller outperforms the fractional order system based on Fractional Order Proportional Integral( FOPI) controller. As it can enhance control character and improve the robustness of the system.
文摘To deal with stabilizing of nonlinear affine fractional order systems subject to time varying delays,two methods for finding an appropriate pseudo state feedback controller are discussed.In the first method,using the Mittag-Lefler function,Laplace transform and Gronwall inequality,a linear stabilizing controller is derived,which uses the fractional order of the delayed system and the upper bound of system nonlinear functions.In the second method,at first a sufficient stability condition for the delayed system is given in the form of a simple linear matrix inequality(LMI)which can easily be solved.Then,on the basis of this result,a stabilizing pseudo-state feedback controller is designed in which the controller gain matrix is easily computed by solving an LMI in terms of delay bounds.Simulation results show the effectiveness of the proposed methods.
文摘Fractional order controllers have been used intensively over the last decades in controlling different types of processes. The main methods for tuning such controllers are based on a frequency domain approach followed by optimization routine, generally in the form of the Matlab fminsearch, but also evolving to more complex routines, such as the genetic algorithms. An alternative to these time consuming optimization routines, a simple graphical method has been proposed. However, these graphical methods are not suitable for all combinations of the imposed performance specifications. To preserve their simplicity, but also to make these graphical methods generally applicable, a modified graphical method using a very straightforward and simple optimization routine is proposed within the paper. Two case studies are presented, for tuning fractional order PI and PD controllers.
基金Project supported by the Natural Science Foundation of Hebei Province,China (Grant No. A2010000343)
文摘In this paper we investigate the synchronization of a class of three-dimensional fractional-order chaotic systems. Based on the Lyapunov stability theory and adaptive control technique, a single adaptive-feedback controller is developed to synchronize a class of fractional-order chaotic systems. The presented controller which only contains a single driving variable is simple both in design and in implementation. Numerical simulation and circuit experimental results for fractional-order chaotic system are provided to illustrate the effectiveness of the proposed scheme.