The numerical approach for finding the solution of fractional order systems of boundary value problems (BPVs) is derived in this paper. The implementation of the weighted residuals such as Galerkin, Least Square, and ...The numerical approach for finding the solution of fractional order systems of boundary value problems (BPVs) is derived in this paper. The implementation of the weighted residuals such as Galerkin, Least Square, and Collocation methods are included for solving fractional order differential equations, which is broadened to acquire the approximate solutions of fractional order systems with differentiable polynomials, namely Legendre polynomials, as basis functions. The algorithm of the residual formulations of matrix form can be coded efficiently. The interpretation of Caputo fractional derivatives is employed here. We have demonstrated these methods numerically through a few examples of linear and nonlinear BVPs. The results in absolute errors show that the present method efficiently finds the numerical solutions of fractional order systems of differential equations.展开更多
In this paper, a modified impulsive control scheme is proposed to realize the complete synchronization of fractional order hyperchaotic systems. By constructing a suitable response system, an integral order synchroniz...In this paper, a modified impulsive control scheme is proposed to realize the complete synchronization of fractional order hyperchaotic systems. By constructing a suitable response system, an integral order synchronization error system is obtained. Based on the theory of Lyapunov stability and the impulsive differential equations, some effective sufficient conditions are derived to guarantee the asymptotical stability of the synchronization error system. In particular, some simpler and more convenient conditions are derived by taking the fixed impulsive distances and control gains. Compared with the existing results, the main results in this paper are practical and rigorous. Simulation results show the effectiveness and the feasibility of the proposed impulsive control method.展开更多
By using power mapping(s =v^m),stability analysis of fractional order polynomials was simplified to the stability analysis of expanded degree integer order polynomials in the first Riemann sheet.However,more investiga...By using power mapping(s =v^m),stability analysis of fractional order polynomials was simplified to the stability analysis of expanded degree integer order polynomials in the first Riemann sheet.However,more investigation is needed for revealing properties of power mapping and demonstration of conformity of Hurwitz stability under power mapping of fractional order characteristic polynomials.Contributions of this study have two folds: Firstly,this paper demonstrates conservation of root argument and magnitude relations under power mapping of characteristic polynomials and thus substantiates validity of Hurwitz stability under power mapping of fractional order characteristic polynomials.This also ensures implications of edge theorem for fractional order interval systems.Secondly,in control engineering point of view,numerical robust stability analysis approaches based on the consideration of minimum argument roots of edge and vertex polynomials are presented.For the computer-aided design of fractional order interval control systems,the minimum argument root principle is applied for a finite set of edge and vertex polynomials,which are sampled from parametric uncertainty box.Several illustrative examples are presented to discuss effectiveness of these approaches.展开更多
Existence of periodic solutions and stability of fractional order dynamic systems are two important and difficult issues in fractional order systems(FOS) field. In this paper, the relationship between integer order sy...Existence of periodic solutions and stability of fractional order dynamic systems are two important and difficult issues in fractional order systems(FOS) field. In this paper, the relationship between integer order systems(IOS) and fractional order systems is discussed. A new proof method based on the above involved relationship for the non existence of periodic solutions of rational fractional order linear time invariant systems is derived. Rational fractional order linear time invariant autonomous system is proved to be equivalent to an integer order linear time invariant non-autonomous system. It is further proved that stability of a fractional order linear time invariant autonomous system is equivalent to the stability of another corresponding integer order linear time invariant autonomous system. The examples and state figures are given to illustrate the effects of conclusion derived.展开更多
Leader-following consensus of fractional order multi-agent systems is investigated. The agents are considered as discrete-time fractional order integrators or fractional order double-integrators. Moreover, the interac...Leader-following consensus of fractional order multi-agent systems is investigated. The agents are considered as discrete-time fractional order integrators or fractional order double-integrators. Moreover, the interaction between the agents is described with an undirected communication graph with a fixed topology. It is shown that the leader-following consensus problem for the considered agents could be converted to the asymptotic stability analysis of a discrete-time fractional order system. Based on this idea, sufficient conditions to reach the leader-following consensus in terms of the controller parameters are extracted. This leads to an appropriate region in the controller parameters space. Numerical simulations are provided to show the performance of the proposed leader-following consensus approach.展开更多
In this paper, a very simple synchronization method is presented for a class of fractional-order chaotic systems only via feedback control. The synchronization technique, based on the stability theory of fractional-or...In this paper, a very simple synchronization method is presented for a class of fractional-order chaotic systems only via feedback control. The synchronization technique, based on the stability theory of fractional-order systems, is simple and theoretically rigorous.展开更多
We present a new fractional-order controller based on the Lyapunov stability theory and propose a control method which can control fractional chaotic and hyperchaotic systems whether systems are commensurate or incomm...We present a new fractional-order controller based on the Lyapunov stability theory and propose a control method which can control fractional chaotic and hyperchaotic systems whether systems are commensurate or incommensurate. The proposed control method is universal, simple, and theoretically rigorous. Numerical simulations are given for several fractional chaotic and hyperchaotic systems to verify the effectiveness and the universality of the proposed control method.展开更多
In complex environments, many distributed multiagent systems are described with the fractional-order dynamics.In this paper, containment control of fractional-order multiagent systems with multiple leader agents are s...In complex environments, many distributed multiagent systems are described with the fractional-order dynamics.In this paper, containment control of fractional-order multiagent systems with multiple leader agents are studied. Firstly,the collaborative control of fractional-order multi-agent systems(FOMAS) with multiple leaders is analyzed in a directed network without delays. Then, by using Laplace transform and frequency domain theorem, containment consensus of networked FOMAS with time delays is investigated in an undirected network, and a critical value of delays is obtained to ensure the containment consensus of FOMAS. Finally, numerical simulations are shown to verify the results.展开更多
This paper investigates the function projective synchronization between fractional-order chaotic systems and integer-order chaotic systems using the stability theory of fractional-order systems. The function projectiv...This paper investigates the function projective synchronization between fractional-order chaotic systems and integer-order chaotic systems using the stability theory of fractional-order systems. The function projective synchronization between three-dimensional (3D) integer-order Lorenz chaotic system and 3D fractional-order Chen chaotic system are presented to demonstrate the effectiveness of the proposed scheme.展开更多
This paper focuses on the synchronisation between fractional-order and integer-order chaotic systems. Based on Lyapunov stability theory and numerical differentiation, a nonlinear feedback controller is obtained to ac...This paper focuses on the synchronisation between fractional-order and integer-order chaotic systems. Based on Lyapunov stability theory and numerical differentiation, a nonlinear feedback controller is obtained to achieve the synchronisation between fractional-order and integer-order chaotic systems. Numerical simulation results are presented to illustrate the effectiveness of this method.展开更多
Based on fractional-order Lyapunov stability theory, this paper provides a novel method to achieve robust modified projective synchronization of two uncertain fractional-order chaotic systems with external disturbance...Based on fractional-order Lyapunov stability theory, this paper provides a novel method to achieve robust modified projective synchronization of two uncertain fractional-order chaotic systems with external disturbance. Simulation of the fractional-order Lorenz chaotic system and fractional-order Chen's chaotic system with both parameters uncertainty and external disturbance show the applicability and the efficiency of the proposed scheme.展开更多
In this paper, the leader-following tracking problem of fractional-order multi-agent systems is addressed. The dynamics of each agent may be heterogeneous and has unknown nonlinearities. By assumptions that the intera...In this paper, the leader-following tracking problem of fractional-order multi-agent systems is addressed. The dynamics of each agent may be heterogeneous and has unknown nonlinearities. By assumptions that the interaction topology is undirected and connected and the unknown nonlinear uncertain dynamics can be parameterized by a neural network, an adaptive learning law is proposed to deal with unknown nonlinear dynamics, based on which a kind of cooperative tracking protocols are constructed. The feedback gain matrix is obtained to solve an algebraic Riccati equation. To construct the fully distributed cooperative tracking protocols, the adaptive law is also adopted to adjust the coupling weight. With the developed control laws,we can prove that all signals in the closed-loop systems are guaranteed to be uniformly ultimately bounded. Finally, a simple simulation example is provided to illustrate the established result.展开更多
This paper addresses the robust admissibility problem in singular fractional-order continuous time systems. It is based on new admissibility conditions of singular fractional-order systems expressed in a set of strict...This paper addresses the robust admissibility problem in singular fractional-order continuous time systems. It is based on new admissibility conditions of singular fractional-order systems expressed in a set of strict linear matrix inequalities(LMIs). Then, a static output feedback controller is designed for the uncertain closed-loop system to be admissible. Numerical examples are given to illustrate the proposed methods.展开更多
This paper explores the adaptive iterative learning control method in the control of fractional order systems for the first time. An adaptive iterative learning control(AILC) scheme is presented for a class of commens...This paper explores the adaptive iterative learning control method in the control of fractional order systems for the first time. An adaptive iterative learning control(AILC) scheme is presented for a class of commensurate high-order uncertain nonlinear fractional order systems in the presence of disturbance.To facilitate the controller design, a sliding mode surface of tracking errors is designed by using sufficient conditions of linear fractional order systems. To relax the assumption of the identical initial condition in iterative learning control(ILC), a new boundary layer function is proposed by employing MittagLeffler function. The uncertainty in the system is compensated for by utilizing radial basis function neural network. Fractional order differential type updating laws and difference type learning law are designed to estimate unknown constant parameters and time-varying parameter, respectively. The hyperbolic tangent function and a convergent series sequence are used to design robust control term for neural network approximation error and bounded disturbance, simultaneously guaranteeing the learning convergence along iteration. The system output is proved to converge to a small neighborhood of the desired trajectory by constructing Lyapnov-like composite energy function(CEF)containing new integral type Lyapunov function, while keeping all the closed-loop signals bounded. Finally, a simulation example is presented to verify the effectiveness of the proposed approach.展开更多
This paper provides a novel method to synchronize uncertain fractional-order chaotic systems with external disturbance via fractional terminal sliding mode control. Based on Lyapunov stability theory, a new fractional...This paper provides a novel method to synchronize uncertain fractional-order chaotic systems with external disturbance via fractional terminal sliding mode control. Based on Lyapunov stability theory, a new fractional-order switching manifold is proposed, and in order to ensure the occurrence of sliding motion in finite time, a corresponding sliding mode control law is designed. The proposed control scheme is applied to synchronize the fractional-order Lorenz chaotic system and fractional-order Chen chaotic system with uncertainty and external disturbance parameters. The simulation results show the applicability and efficiency of the proposed scheme.展开更多
In this paper, an impulsive synchronisation scheme for a class of fractional-order hyperchaotic systems is proposed. The sufficient conditions of a class of integral-order hyperchaotic systems' impulsive synchronisat...In this paper, an impulsive synchronisation scheme for a class of fractional-order hyperchaotic systems is proposed. The sufficient conditions of a class of integral-order hyperchaotic systems' impulsive synchronisation are illustrated. Furthermore, we apply the sufficient conditions to a class of fractional-order hyperchaotic systems and well achieve impulsive synchronisation of these fractional-order hyperchaotic systems, thereby extending the applicable scope of impulsive synchronisation. Numerical simulations further demonstrate the feasibility and effectiveness of the proposed scheme.展开更多
A no-chattering sliding mode control strategy for a class of fractional-order chaotic systems is proposed in this paper. First, the sliding mode control law is derived to stabilize the states of the commensurate fract...A no-chattering sliding mode control strategy for a class of fractional-order chaotic systems is proposed in this paper. First, the sliding mode control law is derived to stabilize the states of the commensurate fractional-order chaotic system and the non-commensurate fractional-order chaotic system, respectively. The designed control scheme guarantees the asymptotical stability of an uncertain fractional-order chaotic system. Simulation results are given for several fractional-order chaotic examples to illustrate the effectiveness of the proposed scheme.展开更多
The stability of impulsive fractional-order systems is discussed. A new synchronization criterion of fractional-order chaotic systems is proposed based on the stability theory of impulsive fractional-order systems. Th...The stability of impulsive fractional-order systems is discussed. A new synchronization criterion of fractional-order chaotic systems is proposed based on the stability theory of impulsive fractional-order systems. The synchronization criterion is suitable for the case of the order 0 〈 q ≤ 1. It is more general than those of the known results. Simulation results are given to show the effectiveness of the proposed synchronization criterion.展开更多
文摘The numerical approach for finding the solution of fractional order systems of boundary value problems (BPVs) is derived in this paper. The implementation of the weighted residuals such as Galerkin, Least Square, and Collocation methods are included for solving fractional order differential equations, which is broadened to acquire the approximate solutions of fractional order systems with differentiable polynomials, namely Legendre polynomials, as basis functions. The algorithm of the residual formulations of matrix form can be coded efficiently. The interpretation of Caputo fractional derivatives is employed here. We have demonstrated these methods numerically through a few examples of linear and nonlinear BVPs. The results in absolute errors show that the present method efficiently finds the numerical solutions of fractional order systems of differential equations.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 50830202 and 51073179)the Natural Science Foundation of Chongqing,China (Grant No. CSTC 2010BB2238)+2 种基金the Doctoral Program of Higher Education Foundation of Institutions of China (Grant Nos. 20090191110011 and 20100191120025)the Natural Science Foundation for Postdoctoral Scientists of China (Grant Nos. 20100470813 and 20100480043)the Fundamental Research Funds for the Central Universities(Grant Nos. CDJZR11 12 00 03 and CDJZR11 12 88 01)
文摘In this paper, a modified impulsive control scheme is proposed to realize the complete synchronization of fractional order hyperchaotic systems. By constructing a suitable response system, an integral order synchronization error system is obtained. Based on the theory of Lyapunov stability and the impulsive differential equations, some effective sufficient conditions are derived to guarantee the asymptotical stability of the synchronization error system. In particular, some simpler and more convenient conditions are derived by taking the fixed impulsive distances and control gains. Compared with the existing results, the main results in this paper are practical and rigorous. Simulation results show the effectiveness and the feasibility of the proposed impulsive control method.
文摘By using power mapping(s =v^m),stability analysis of fractional order polynomials was simplified to the stability analysis of expanded degree integer order polynomials in the first Riemann sheet.However,more investigation is needed for revealing properties of power mapping and demonstration of conformity of Hurwitz stability under power mapping of fractional order characteristic polynomials.Contributions of this study have two folds: Firstly,this paper demonstrates conservation of root argument and magnitude relations under power mapping of characteristic polynomials and thus substantiates validity of Hurwitz stability under power mapping of fractional order characteristic polynomials.This also ensures implications of edge theorem for fractional order interval systems.Secondly,in control engineering point of view,numerical robust stability analysis approaches based on the consideration of minimum argument roots of edge and vertex polynomials are presented.For the computer-aided design of fractional order interval control systems,the minimum argument root principle is applied for a finite set of edge and vertex polynomials,which are sampled from parametric uncertainty box.Several illustrative examples are presented to discuss effectiveness of these approaches.
文摘Existence of periodic solutions and stability of fractional order dynamic systems are two important and difficult issues in fractional order systems(FOS) field. In this paper, the relationship between integer order systems(IOS) and fractional order systems is discussed. A new proof method based on the above involved relationship for the non existence of periodic solutions of rational fractional order linear time invariant systems is derived. Rational fractional order linear time invariant autonomous system is proved to be equivalent to an integer order linear time invariant non-autonomous system. It is further proved that stability of a fractional order linear time invariant autonomous system is equivalent to the stability of another corresponding integer order linear time invariant autonomous system. The examples and state figures are given to illustrate the effects of conclusion derived.
文摘Leader-following consensus of fractional order multi-agent systems is investigated. The agents are considered as discrete-time fractional order integrators or fractional order double-integrators. Moreover, the interaction between the agents is described with an undirected communication graph with a fixed topology. It is shown that the leader-following consensus problem for the considered agents could be converted to the asymptotic stability analysis of a discrete-time fractional order system. Based on this idea, sufficient conditions to reach the leader-following consensus in terms of the controller parameters are extracted. This leads to an appropriate region in the controller parameters space. Numerical simulations are provided to show the performance of the proposed leader-following consensus approach.
文摘In this paper, a very simple synchronization method is presented for a class of fractional-order chaotic systems only via feedback control. The synchronization technique, based on the stability theory of fractional-order systems, is simple and theoretically rigorous.
基金Project supported by the National Natural Science Foundation of China (Grant No. 11171238), the Science Found of Sichuan University of Science and Engineering (Grant Nos. 2012PY17 and 2014PY06), the Fund from Artificial Intelligence Key Laboratory of Sichuan Province (Grant No. 2014RYJ05), and the Opening Project of Sichuan Province University Key Laborstory of Bridge Non-destruction Detecting and Engineering Computing (Grant No. 2013QYJ01).
文摘We present a new fractional-order controller based on the Lyapunov stability theory and propose a control method which can control fractional chaotic and hyperchaotic systems whether systems are commensurate or incommensurate. The proposed control method is universal, simple, and theoretically rigorous. Numerical simulations are given for several fractional chaotic and hyperchaotic systems to verify the effectiveness and the universality of the proposed control method.
基金supported by the National Natural Science Foundation of China(61273200,61273152,61202111,61304052,51407088)the Science Foundation of Education Office of Shandong Province of China(ZR2011FM07,BS2015DX018)
文摘In complex environments, many distributed multiagent systems are described with the fractional-order dynamics.In this paper, containment control of fractional-order multiagent systems with multiple leader agents are studied. Firstly,the collaborative control of fractional-order multi-agent systems(FOMAS) with multiple leaders is analyzed in a directed network without delays. Then, by using Laplace transform and frequency domain theorem, containment consensus of networked FOMAS with time delays is investigated in an undirected network, and a critical value of delays is obtained to ensure the containment consensus of FOMAS. Finally, numerical simulations are shown to verify the results.
文摘This paper investigates the function projective synchronization between fractional-order chaotic systems and integer-order chaotic systems using the stability theory of fractional-order systems. The function projective synchronization between three-dimensional (3D) integer-order Lorenz chaotic system and 3D fractional-order Chen chaotic system are presented to demonstrate the effectiveness of the proposed scheme.
文摘This paper focuses on the synchronisation between fractional-order and integer-order chaotic systems. Based on Lyapunov stability theory and numerical differentiation, a nonlinear feedback controller is obtained to achieve the synchronisation between fractional-order and integer-order chaotic systems. Numerical simulation results are presented to illustrate the effectiveness of this method.
基金supported by National Natural Science Foundation of China(61403149,61573298)Natural Science Foundation of Fujian Province(2015J01261,2016J05165)Foundation of Huaqiao University(Z14Y0002)
基金Project supported by the National Natural Science Foundation of China(Grant No.61203041)the Fundamental Research Funds for the Central Universities of China(Grant No.11MG49)
文摘Based on fractional-order Lyapunov stability theory, this paper provides a novel method to achieve robust modified projective synchronization of two uncertain fractional-order chaotic systems with external disturbance. Simulation of the fractional-order Lorenz chaotic system and fractional-order Chen's chaotic system with both parameters uncertainty and external disturbance show the applicability and the efficiency of the proposed scheme.
基金supported by the National Natural Science Foundation of China(61303211)Zhejiang Provincial Natural Science Foundation of China(LY17F030003,LY15F030009)
文摘In this paper, the leader-following tracking problem of fractional-order multi-agent systems is addressed. The dynamics of each agent may be heterogeneous and has unknown nonlinearities. By assumptions that the interaction topology is undirected and connected and the unknown nonlinear uncertain dynamics can be parameterized by a neural network, an adaptive learning law is proposed to deal with unknown nonlinear dynamics, based on which a kind of cooperative tracking protocols are constructed. The feedback gain matrix is obtained to solve an algebraic Riccati equation. To construct the fully distributed cooperative tracking protocols, the adaptive law is also adopted to adjust the coupling weight. With the developed control laws,we can prove that all signals in the closed-loop systems are guaranteed to be uniformly ultimately bounded. Finally, a simple simulation example is provided to illustrate the established result.
文摘This paper addresses the robust admissibility problem in singular fractional-order continuous time systems. It is based on new admissibility conditions of singular fractional-order systems expressed in a set of strict linear matrix inequalities(LMIs). Then, a static output feedback controller is designed for the uncertain closed-loop system to be admissible. Numerical examples are given to illustrate the proposed methods.
基金supported by the National Natural Science Foundation of China(60674090)Shandong Natural Science Foundation(ZR2017QF016)
文摘This paper explores the adaptive iterative learning control method in the control of fractional order systems for the first time. An adaptive iterative learning control(AILC) scheme is presented for a class of commensurate high-order uncertain nonlinear fractional order systems in the presence of disturbance.To facilitate the controller design, a sliding mode surface of tracking errors is designed by using sufficient conditions of linear fractional order systems. To relax the assumption of the identical initial condition in iterative learning control(ILC), a new boundary layer function is proposed by employing MittagLeffler function. The uncertainty in the system is compensated for by utilizing radial basis function neural network. Fractional order differential type updating laws and difference type learning law are designed to estimate unknown constant parameters and time-varying parameter, respectively. The hyperbolic tangent function and a convergent series sequence are used to design robust control term for neural network approximation error and bounded disturbance, simultaneously guaranteeing the learning convergence along iteration. The system output is proved to converge to a small neighborhood of the desired trajectory by constructing Lyapnov-like composite energy function(CEF)containing new integral type Lyapunov function, while keeping all the closed-loop signals bounded. Finally, a simulation example is presented to verify the effectiveness of the proposed approach.
基金partially supported by National Natural Science Foundation of China(61290322,61273222,61322303,61473248,61403335)Hebei Province Applied Basis Research Project(15967629D)Top Talents Project of Hebei Province and Yanshan University Project(13LGA020)
基金Project supported by the Fundamental Research Funds for the Central Universities of China (Grant No. 11MG49)
文摘This paper provides a novel method to synchronize uncertain fractional-order chaotic systems with external disturbance via fractional terminal sliding mode control. Based on Lyapunov stability theory, a new fractional-order switching manifold is proposed, and in order to ensure the occurrence of sliding motion in finite time, a corresponding sliding mode control law is designed. The proposed control scheme is applied to synchronize the fractional-order Lorenz chaotic system and fractional-order Chen chaotic system with uncertainty and external disturbance parameters. The simulation results show the applicability and efficiency of the proposed scheme.
基金supported by the National Natural Science Foundation of China (Grant Nos. 60573172 and 60973152)the Doctoral Program Foundation of the Institution of Higher Education of China (Grant No. 20070141014)the Natural Science Foundation of Liaoning Province,China (No. 20082165)
文摘In this paper, an impulsive synchronisation scheme for a class of fractional-order hyperchaotic systems is proposed. The sufficient conditions of a class of integral-order hyperchaotic systems' impulsive synchronisation are illustrated. Furthermore, we apply the sufficient conditions to a class of fractional-order hyperchaotic systems and well achieve impulsive synchronisation of these fractional-order hyperchaotic systems, thereby extending the applicable scope of impulsive synchronisation. Numerical simulations further demonstrate the feasibility and effectiveness of the proposed scheme.
基金supported by the National Natural Science Foundation of China (Grant No. 51109180)the Personal Special Fund of Northwest Agriculture and Forestry University,China (Grant No. RCZX-2009-01)
文摘A no-chattering sliding mode control strategy for a class of fractional-order chaotic systems is proposed in this paper. First, the sliding mode control law is derived to stabilize the states of the commensurate fractional-order chaotic system and the non-commensurate fractional-order chaotic system, respectively. The designed control scheme guarantees the asymptotical stability of an uncertain fractional-order chaotic system. Simulation results are given for several fractional-order chaotic examples to illustrate the effectiveness of the proposed scheme.
基金supported by Scientific Research Foundation of Huaiyin Institute of Technology (Grant No. HGA1102)
文摘The stability of impulsive fractional-order systems is discussed. A new synchronization criterion of fractional-order chaotic systems is proposed based on the stability theory of impulsive fractional-order systems. The synchronization criterion is suitable for the case of the order 0 〈 q ≤ 1. It is more general than those of the known results. Simulation results are given to show the effectiveness of the proposed synchronization criterion.