Normally all real world process in a process industry will have time delay.For those processes with time delays,obtaining satisfactory closed loop performances becomes very difficult.In this work,three interacting cyl...Normally all real world process in a process industry will have time delay.For those processes with time delays,obtaining satisfactory closed loop performances becomes very difficult.In this work,three interacting cylindrical tank process is considered for study and the objective of the work is to compensate for time delays using smith predictor structure and to maintain the level in the third tank.Input/Output data is generated for the three interacting tank process.It is approximated as Integer First Order Plus Dead Time system(IFOPDT)and Fractional First Order Plus Dead Time system(FFOPDT).Smith predictor based fractional order Proportional Integral controller and Integer order Proportional Integral controller is designed for the IFOPDT and FFOPDT model using frequency response technique and their closed loop performance indices are compared and tabulated.The servo and regulatory responses are simulated using Matlab/Simulink.展开更多
针对基于分数低阶矩类阵列波达方向(DOA)估计方法仅适用于独立同分布(i.i.d)SαS背景噪声的缺点,提出了一种线性极化阵列DOA和极化参数联合估计的分数低阶循环相关(FLOCC)极化参数联合估计(ESPRIT)算法。该方法首先利用入射信号的循环...针对基于分数低阶矩类阵列波达方向(DOA)估计方法仅适用于独立同分布(i.i.d)SαS背景噪声的缺点,提出了一种线性极化阵列DOA和极化参数联合估计的分数低阶循环相关(FLOCC)极化参数联合估计(ESPRIT)算法。该方法首先利用入射信号的循环平稳特性,采用分数低阶循环相关函数抑制α和高斯混合噪声及与信号循环频率相异的任何循环平稳干扰信号。在此基础上,利用阵列信号参数与噪声子空间的正交性,采用ESPRIT算法直接求取了信号的DOA和极化参数。该方法对于α和高斯混合噪声及与信号循环频率相异的任何循环平稳干扰信号具有很强的抑制能力。即使对于空域内靠得非常近的信源,该方法也可利用极化信息的差异进行区分。实验结果表明,在α和高斯混合信噪比(SNR)为0 d B,信干比(SIR)为3 d B时,其DOA和极化参数估计的均方根误差分别为0.23°和0.54°;并且在实测数据环境下,当SNR为10 d B时,本文算法仍然有效。展开更多
针对分数阶积分时滞过程,提出了一种内模PID控制器的设计与整定方法。将内模控制(internal model control,IMC)方法推广应用于分数阶系统,采用一阶泰勒级数逼近时滞环节,导出了一种分数阶内模PID控制器,该控制器仅有一个可调参数,且该...针对分数阶积分时滞过程,提出了一种内模PID控制器的设计与整定方法。将内模控制(internal model control,IMC)方法推广应用于分数阶系统,采用一阶泰勒级数逼近时滞环节,导出了一种分数阶内模PID控制器,该控制器仅有一个可调参数,且该参数与系统的动态响应特性及鲁棒性直接相关,并采用一种鲁棒性能指标实现了控制器参数的解析整定。仿真结果表明:分数阶内模PID控制器设计方法简单,参数整定方便,而且可使系统具有良好的目标值跟踪特性、扰动抑制特性以及克服参数变化的鲁棒性。展开更多
文摘Normally all real world process in a process industry will have time delay.For those processes with time delays,obtaining satisfactory closed loop performances becomes very difficult.In this work,three interacting cylindrical tank process is considered for study and the objective of the work is to compensate for time delays using smith predictor structure and to maintain the level in the third tank.Input/Output data is generated for the three interacting tank process.It is approximated as Integer First Order Plus Dead Time system(IFOPDT)and Fractional First Order Plus Dead Time system(FFOPDT).Smith predictor based fractional order Proportional Integral controller and Integer order Proportional Integral controller is designed for the IFOPDT and FFOPDT model using frequency response technique and their closed loop performance indices are compared and tabulated.The servo and regulatory responses are simulated using Matlab/Simulink.
文摘针对基于分数低阶矩类阵列波达方向(DOA)估计方法仅适用于独立同分布(i.i.d)SαS背景噪声的缺点,提出了一种线性极化阵列DOA和极化参数联合估计的分数低阶循环相关(FLOCC)极化参数联合估计(ESPRIT)算法。该方法首先利用入射信号的循环平稳特性,采用分数低阶循环相关函数抑制α和高斯混合噪声及与信号循环频率相异的任何循环平稳干扰信号。在此基础上,利用阵列信号参数与噪声子空间的正交性,采用ESPRIT算法直接求取了信号的DOA和极化参数。该方法对于α和高斯混合噪声及与信号循环频率相异的任何循环平稳干扰信号具有很强的抑制能力。即使对于空域内靠得非常近的信源,该方法也可利用极化信息的差异进行区分。实验结果表明,在α和高斯混合信噪比(SNR)为0 d B,信干比(SIR)为3 d B时,其DOA和极化参数估计的均方根误差分别为0.23°和0.54°;并且在实测数据环境下,当SNR为10 d B时,本文算法仍然有效。
文摘针对分数阶积分时滞过程,提出了一种内模PID控制器的设计与整定方法。将内模控制(internal model control,IMC)方法推广应用于分数阶系统,采用一阶泰勒级数逼近时滞环节,导出了一种分数阶内模PID控制器,该控制器仅有一个可调参数,且该参数与系统的动态响应特性及鲁棒性直接相关,并采用一种鲁棒性能指标实现了控制器参数的解析整定。仿真结果表明:分数阶内模PID控制器设计方法简单,参数整定方便,而且可使系统具有良好的目标值跟踪特性、扰动抑制特性以及克服参数变化的鲁棒性。