This paper discusses the existence and multiplicity of positive solutions for a class of singular boundary value problems of Hadamard fractional differential systems involving the p-Laplacian operator. First, for the ...This paper discusses the existence and multiplicity of positive solutions for a class of singular boundary value problems of Hadamard fractional differential systems involving the p-Laplacian operator. First, for the sake of overcoming the singularity, sequences of approximate solutions to the boundary value problem are obtained by applying the fixed point index theory on the cone. Next, it is demonstrated that these sequences of approximate solutions are uniformly bounded and equicontinuous. The main results are then established through the Ascoli-Arzelà theorem. Ultimately, an instance is worked out to test and verify the validity of the main results.展开更多
Joint time–frequency analysis is an emerging method for interpreting the underlying physics in fuel cells,batteries,and supercapacitors.To increase the reliability of time–frequency analysis,a theoretical correlatio...Joint time–frequency analysis is an emerging method for interpreting the underlying physics in fuel cells,batteries,and supercapacitors.To increase the reliability of time–frequency analysis,a theoretical correlation between frequency-domain stationary analysis and time-domain transient analysis is urgently required.The present work formularizes a thorough model reduction of fractional impedance spectra for electrochemical energy devices involving not only the model reduction from fractional-order models to integer-order models and from high-to low-order RC circuits but also insight into the evolution of the characteristic time constants during the whole reduction process.The following work has been carried out:(i)the model-reduction theory is addressed for typical Warburg elements and RC circuits based on the continued fraction expansion theory and the response error minimization technique,respectively;(ii)the order effect on the model reduction of typical Warburg elements is quantitatively evaluated by time–frequency analysis;(iii)the results of time–frequency analysis are confirmed to be useful to determine the reduction order in terms of the kinetic information needed to be captured;and(iv)the results of time–frequency analysis are validated for the model reduction of fractional impedance spectra for lithium-ion batteries,supercapacitors,and solid oxide fuel cells.In turn,the numerical validation has demonstrated the powerful function of the joint time–frequency analysis.The thorough model reduction of fractional impedance spectra addressed in the present work not only clarifies the relationship between time-domain transient analysis and frequency-domain stationary analysis but also enhances the reliability of the joint time–frequency analysis for electrochemical energy devices.展开更多
In this paper,the study of gradient regularity for solutions of a class of elliptic problems of p-Laplace type is offered.In particular,we prove a global result concerning Lorentz-Morrey regularity of the non-homogene...In this paper,the study of gradient regularity for solutions of a class of elliptic problems of p-Laplace type is offered.In particular,we prove a global result concerning Lorentz-Morrey regularity of the non-homogeneous boundary data problem:-div((s^(2)+|▽u|^(2)p-2/2)▽u)=-div(|f|^(p-2)f)+g inΩ,u=h in■Ω,with the(sub-elliptic)degeneracy condition s∈[0,1]and with mixed data f∈L^(p)(Q;R^(n)),g∈Lp/(p-1)(Ω;R^(n))for p∈(1,n).This problem naturally arises in various applications such as dynamics of non-Newtonian fluid theory,electro-rheology,radiation of heat,plastic moulding and many others.Building on the idea of level-set inequality on fractional maximal distribution functions,it enables us to carry out a global regularity result of the solution via fractional maximal operators.Due to the significance of M_(α)and its relation with Riesz potential,estimates via fractional maximal functions allow us to bound oscillations not only for solution but also its fractional derivatives of orderα.Our approach therefore has its own interest.展开更多
Mechanical excavation,blasting,adjacent rockburst and fracture slip that occur during mining excavation impose dynamic loads on the rock mass,leading to further fracture of damaged surrounding rock in three-dimensiona...Mechanical excavation,blasting,adjacent rockburst and fracture slip that occur during mining excavation impose dynamic loads on the rock mass,leading to further fracture of damaged surrounding rock in three-dimensional high-stress and even causing disasters.Therefore,a novel complex true triaxial static-dynamic combined loading method reflecting underground excavation damage and then frequent intermittent disturbance failure is proposed.True triaxial static compression and intermittent disturbance tests are carried out on monzogabbro.The effects of intermediate principal stress and amplitude on the strength characteristics,deformation characteristics,failure characteristics,and precursors of monzogabbro are analyzed,intermediate principal stress and amplitude increase monzogabbro strength and tensile fracture mechanism.Rapid increases in microseismic parameters during rock loading can be precursors for intermittent rock disturbance.Based on the experimental result,the new damage fractional elements and method with considering crack initiation stress and crack unstable stress as initiation and acceleration condition of intermittent disturbance irreversible deformation are proposed.A novel three-dimensional disturbance fractional deterioration model considering the intermediate principal stress effect and intermittent disturbance damage effect is established,and the model predicted results align well with the experimental results.The sensitivity of stress states and model parameters is further explored,and the intermittent disturbance behaviors at different f are predicted.This study provides valuable theoretical bases for the stability analysis of deep mining engineering under dynamic loads.展开更多
This article describes the solution procedure of the fractional Pade-Ⅱ equation and generalized Zakharov equation(GSEs)using the sine-cosine method.Pade-Ⅱ is an important nonlinear wave equation modeling unidirectio...This article describes the solution procedure of the fractional Pade-Ⅱ equation and generalized Zakharov equation(GSEs)using the sine-cosine method.Pade-Ⅱ is an important nonlinear wave equation modeling unidirectional propagation of long-wave in dispersive media and GSEs are used to model the interaction between one-dimensional high,and low-frequency waves.Classes of trigonometric and hyperbolic function solutions in fractional calculus are discussed.Graphical simulations of the numerical solutions are flaunted by MATLAB.展开更多
Dear Editor,Dynamics and digital circuit implementation of the fractional-order Lorenz system are investigated by employing Adomian decomposition method(ADM).Dynamics of the fractional-order Lorenz system with derivat...Dear Editor,Dynamics and digital circuit implementation of the fractional-order Lorenz system are investigated by employing Adomian decomposition method(ADM).Dynamics of the fractional-order Lorenz system with derivative order and parameter varying is analyzed by means of Lyapunov exponents(LEs),bifurcation diagram.展开更多
BACKGROUND The recently introduced ultrasonic flow ratio(UFR),is a novel fast computational method to derive fractional flow reserve(FFR)from intravascular ultrasound(IVUS)images.In the present study,we evaluate the d...BACKGROUND The recently introduced ultrasonic flow ratio(UFR),is a novel fast computational method to derive fractional flow reserve(FFR)from intravascular ultrasound(IVUS)images.In the present study,we evaluate the diagnostic performance of UFR in patients with intermediate left main(LM)stenosis.METHODS This is a prospective,single center study enrolling consecutive patients with presence of intermediated LM lesions(diameter stenosis of 30%-80%by visual estimation)underwent IVUS and FFR measurement.An independent core laboratory assessed offline UFR and IVUS-derived minimal lumen area(MLA)in a blinded fashion.RESULTS Both UFR and FFR were successfully achieved in 41 LM patients(mean age,62.0±9.9 years,46.3%diabetes).An acceptable correlation between UFR and FFR was identified(r=0.688,P<0.0001),with an absolute numerical difference of 0.03(standard difference:0.01).The area under the curve(AUC)in diagnosis of physiologically significant coronary stenosis for UFR was 0.94(95%CI:0.87-1.01),which was significantly higher than angiographic identified stenosis>50%(AUC=0.66,P<0.001)and numerically higher than IVUS-derived MLA(AUC=0.82;P=0.09).Patient level diagnostic accuracy,sensitivity and specificity for UFR to identify FFR≤0.80 was 82.9%(95%CI:70.2-95.7),93.1%(95%CI:82.2-100.0),58.3%(95%CI:26.3-90.4),respectively.CONCLUSION In patients with intermediate LM diseases,UFR was proved to be associated with acceptable correlation and high accuracy with pressure wire-based FFR as standard reference.The present study supports the use of UFR for functional evaluation of intermediate LM stenosis.展开更多
In recent years,fractional-order chaotic maps have been paid more attention in publications because of the memory effect.This paper presents a novel variable-order fractional sine map(VFSM)based on the discrete fracti...In recent years,fractional-order chaotic maps have been paid more attention in publications because of the memory effect.This paper presents a novel variable-order fractional sine map(VFSM)based on the discrete fractional calculus.Specially,the order is defined as an iterative function that incorporates the current state of the system.By analyzing phase diagrams,time sequences,bifurcations,Lyapunov exponents and fuzzy entropy complexity,the dynamics of the proposed map are investigated comparing with the constant-order fractional sine map.The results reveal that the variable order has a good effect on improving the chaotic performance,and it enlarges the range of available parameter values as well as reduces non-chaotic windows.Multiple coexisting attractors also enrich the dynamics of VFSM and prove its sensitivity to initial values.Moreover,the sequence generated by the proposed map passes the statistical test for pseudorandom number and shows strong robustness to parameter estimation,which proves the potential applications in the field of information security.展开更多
This article proposes a novel fractional heterogeneous neural network by coupling a Rulkov neuron with a Hopfield neural network(FRHNN),utilizing memristors for emulating neural synapses.The study firstly demonstrates...This article proposes a novel fractional heterogeneous neural network by coupling a Rulkov neuron with a Hopfield neural network(FRHNN),utilizing memristors for emulating neural synapses.The study firstly demonstrates the coexistence of multiple firing patterns through phase diagrams,Lyapunov exponents(LEs),and bifurcation diagrams.Secondly,the parameter related firing behaviors are described through two-parameter bifurcation diagrams.Subsequently,local attraction basins reveal multi-stability phenomena related to initial values.Moreover,the proposed model is implemented on a microcomputer-based ARM platform,and the experimental results correspond to the numerical simulations.Finally,the article explores the application of digital watermarking for medical images,illustrating its features of excellent imperceptibility,extensive key space,and robustness against attacks including noise and cropping.展开更多
A significant obstacle impeding the advancement of the time fractional Schrodinger equation lies in the challenge of determining its precise mathematical formulation.In order to address this,we undertake an exploratio...A significant obstacle impeding the advancement of the time fractional Schrodinger equation lies in the challenge of determining its precise mathematical formulation.In order to address this,we undertake an exploration of the time fractional Schrodinger equation within the context of a non-Markovian environment.By leveraging a two-level atom as an illustrative case,we find that the choice to raise i to the order of the time derivative is inappropriate.In contrast to the conventional approach used to depict the dynamic evolution of quantum states in a non-Markovian environment,the time fractional Schrodinger equation,when devoid of fractional-order operations on the imaginary unit i,emerges as a more intuitively comprehensible framework in physics and offers greater simplicity in computational aspects.Meanwhile,we also prove that it is meaningless to study the memory of time fractional Schrodinger equation with time derivative 1<α≤2.It should be noted that we have not yet constructed an open system that can be fully described by the time fractional Schrodinger equation.This will be the focus of future research.Our study might provide a new perspective on the role of time fractional Schrodinger equation.展开更多
Let B^(H) be a fractional Brownian motion with Hurst index 1/2≤H<1.In this paper,we consider the equation(called the Ornstein-Uhlenbeck process with a linear self-repelling drift)dX_(t)^(H)=dB_(t)^(H)+σ X_(t)^(H)...Let B^(H) be a fractional Brownian motion with Hurst index 1/2≤H<1.In this paper,we consider the equation(called the Ornstein-Uhlenbeck process with a linear self-repelling drift)dX_(t)^(H)=dB_(t)^(H)+σ X_(t)^(H)dt+vdt-θ(∫_(0)^(t)(X_(t)^(H)-X_(s)^(H))ds)dt,whereθ<0,σ,v∈ℝ.The process is an analogue of self-attracting diffusion(Cranston,Le Jan.Math Ann,1995,303:87–93).Our main aim is to study the large time behaviors of the process.We show that the solution X^(H)diverges to infinity as t tends to infinity,and obtain the speed at which the process X^(H)diverges to infinity.展开更多
The goal of this research is to develop a new,simplified analytical method known as the ARA-residue power series method for obtaining exact-approximate solutions employing Caputo type fractional partial differential e...The goal of this research is to develop a new,simplified analytical method known as the ARA-residue power series method for obtaining exact-approximate solutions employing Caputo type fractional partial differential equations(PDEs)with variable coefficient.ARA-transform is a robust and highly flexible generalization that unifies several existing transforms.The key concept behind this method is to create approximate series outcomes by implementing the ARA-transform and Taylor’s expansion.The process of finding approximations for dynamical fractional-order PDEs is challenging,but the ARA-residual power series technique magnifies this challenge by articulating the solution in a series pattern and then determining the series coefficients by employing the residual component and the limit at infinity concepts.This approach is effective and useful for solving a massive class of fractional-order PDEs.Five appealing implementations are taken into consideration to demonstrate the effectiveness of the projected technique in creating solitary series findings for the governing equations with variable coefficients.Additionally,several visualizations are drawn for different fractional-order values.Besides that,the estimated findings by the proposed technique are in close agreement with the exact outcomes.Finally,statistical analyses further validate the efficacy,dependability and steady interconnectivity of the suggested ARA-residue power series approach.展开更多
This paper deals with the radial symmetry of positive solutions to the nonlocal problem(-Δ)_(γ)~su=b(x)f(u)in B_(1){0},u=h in R~N B_(1),where b:B_1→R is locally Holder continuous,radially symmetric and decreasing i...This paper deals with the radial symmetry of positive solutions to the nonlocal problem(-Δ)_(γ)~su=b(x)f(u)in B_(1){0},u=h in R~N B_(1),where b:B_1→R is locally Holder continuous,radially symmetric and decreasing in the|x|direction,F:R→R is a Lipschitz function,h:B_1→R is radially symmetric,decreasing with respect to|x|in R^(N)/B_(1),B_(1) is the unit ball centered at the origin,and(-Δ)_γ~s is the weighted fractional Laplacian with s∈(0,1),γ∈[0,2s)defined by(-△)^(s)_(γ)u(x)=CN,slimδ→0+∫R^(N)/B_(δ)(x)u(x)-u(y)/|x-y|N+2s|y|^(r)dy.We consider the radial symmetry of isolated singular positive solutions to the nonlocal problem in whole space(-Δ)_(γ)^(s)u(x)=b(x)f(u)in R^(N)\{0},under suitable additional assumptions on b and f.Our symmetry results are derived by the method of moving planes,where the main difficulty comes from the weighted fractional Laplacian.Our results could be applied to get a sharp asymptotic for semilinear problems with the fractional Hardy operators(-Δ)^(s)u+μ/(|x|^(2s))u=b(x)f(u)in B_(1)\{0},u=h in R^(N)\B_(1),under suitable additional assumptions on b,f and h.展开更多
The aim of this research is to demonstrate a novel scheme for approximating the Riemann-Liouville fractional integral operator.This would be achieved by first establishing a fractional-order version of the 2-point Tra...The aim of this research is to demonstrate a novel scheme for approximating the Riemann-Liouville fractional integral operator.This would be achieved by first establishing a fractional-order version of the 2-point Trapezoidal rule and then by proposing another fractional-order version of the(n+1)-composite Trapezoidal rule.In particular,the so-called divided-difference formula is typically employed to derive the 2-point Trapezoidal rule,which has accordingly been used to derive a more accurate fractional-order formula called the(n+1)-composite Trapezoidal rule.Additionally,in order to increase the accuracy of the proposed approximations by reducing the true errors,we incorporate the so-called Romberg integration,which is an extrapolation formula of the Trapezoidal rule for integration,into our proposed approaches.Several numerical examples are provided and compared with a modern definition of the Riemann-Liouville fractional integral operator to illustrate the efficacy of our scheme.展开更多
Anovel accuratemethod is proposed to solve a broad variety of linear and nonlinear(1+1)-dimensional and(2+1)-dimensional multi-term time-fractional partial differential equations with spatial operators of anisotropic ...Anovel accuratemethod is proposed to solve a broad variety of linear and nonlinear(1+1)-dimensional and(2+1)-dimensional multi-term time-fractional partial differential equations with spatial operators of anisotropic diffusivity.For(1+1)-dimensional problems,analytical solutions that satisfy the boundary requirements are derived.Such solutions are numerically calculated using the trigonometric basis approximation for(2+1)-dimensional problems.With the aid of these analytical or numerical approximations,the original problems can be converted into the fractional ordinary differential equations,and solutions to the fractional ordinary differential equations are approximated by modified radial basis functions with time-dependent coefficients.An efficient backward substitution strategy that was previously provided for a single fractional ordinary differential equation is then used to solve the corresponding systems.The straightforward quasilinearization technique is applied to handle nonlinear issues.Numerical experiments demonstrate the suggested algorithm’s superior accuracy and efficiency.展开更多
In this article,we consider the diffusion equation with multi-term time-fractional derivatives.We first derive,by a subordination principle for the solution,that the solution is positive when the initial value is non-...In this article,we consider the diffusion equation with multi-term time-fractional derivatives.We first derive,by a subordination principle for the solution,that the solution is positive when the initial value is non-negative.As an application,we prove the uniqueness of solution to an inverse problem of determination of the temporally varying source term by integral type information in a subdomain.Finally,several numerical experiments are presented to show the accuracy and efficiency of the algorithm.展开更多
文摘This paper discusses the existence and multiplicity of positive solutions for a class of singular boundary value problems of Hadamard fractional differential systems involving the p-Laplacian operator. First, for the sake of overcoming the singularity, sequences of approximate solutions to the boundary value problem are obtained by applying the fixed point index theory on the cone. Next, it is demonstrated that these sequences of approximate solutions are uniformly bounded and equicontinuous. The main results are then established through the Ascoli-Arzelà theorem. Ultimately, an instance is worked out to test and verify the validity of the main results.
基金support from the National Science Foundation of China(22078190)the National Key R&D Plan of China(2020YFB1505802).
文摘Joint time–frequency analysis is an emerging method for interpreting the underlying physics in fuel cells,batteries,and supercapacitors.To increase the reliability of time–frequency analysis,a theoretical correlation between frequency-domain stationary analysis and time-domain transient analysis is urgently required.The present work formularizes a thorough model reduction of fractional impedance spectra for electrochemical energy devices involving not only the model reduction from fractional-order models to integer-order models and from high-to low-order RC circuits but also insight into the evolution of the characteristic time constants during the whole reduction process.The following work has been carried out:(i)the model-reduction theory is addressed for typical Warburg elements and RC circuits based on the continued fraction expansion theory and the response error minimization technique,respectively;(ii)the order effect on the model reduction of typical Warburg elements is quantitatively evaluated by time–frequency analysis;(iii)the results of time–frequency analysis are confirmed to be useful to determine the reduction order in terms of the kinetic information needed to be captured;and(iv)the results of time–frequency analysis are validated for the model reduction of fractional impedance spectra for lithium-ion batteries,supercapacitors,and solid oxide fuel cells.In turn,the numerical validation has demonstrated the powerful function of the joint time–frequency analysis.The thorough model reduction of fractional impedance spectra addressed in the present work not only clarifies the relationship between time-domain transient analysis and frequency-domain stationary analysis but also enhances the reliability of the joint time–frequency analysis for electrochemical energy devices.
基金supported by Ministry of Education and Training(Vietnam),under grant number B2023-SPS-01。
文摘In this paper,the study of gradient regularity for solutions of a class of elliptic problems of p-Laplace type is offered.In particular,we prove a global result concerning Lorentz-Morrey regularity of the non-homogeneous boundary data problem:-div((s^(2)+|▽u|^(2)p-2/2)▽u)=-div(|f|^(p-2)f)+g inΩ,u=h in■Ω,with the(sub-elliptic)degeneracy condition s∈[0,1]and with mixed data f∈L^(p)(Q;R^(n)),g∈Lp/(p-1)(Ω;R^(n))for p∈(1,n).This problem naturally arises in various applications such as dynamics of non-Newtonian fluid theory,electro-rheology,radiation of heat,plastic moulding and many others.Building on the idea of level-set inequality on fractional maximal distribution functions,it enables us to carry out a global regularity result of the solution via fractional maximal operators.Due to the significance of M_(α)and its relation with Riesz potential,estimates via fractional maximal functions allow us to bound oscillations not only for solution but also its fractional derivatives of orderα.Our approach therefore has its own interest.
基金the financial support from the National Natural Science Foundation of China(No.52109119)the Guangxi Natural Science Foundation(No.2021GXNSFBA075030)+2 种基金the Guangxi Science and Technology Project(No.Guike AD20325002)the Chinese Postdoctoral Science Fund Project(No.2022 M723408)the Open Research Fund of State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin(China Institute of Water Resources and Hydropower Research)(No.IWHR-SKL-202202).
文摘Mechanical excavation,blasting,adjacent rockburst and fracture slip that occur during mining excavation impose dynamic loads on the rock mass,leading to further fracture of damaged surrounding rock in three-dimensional high-stress and even causing disasters.Therefore,a novel complex true triaxial static-dynamic combined loading method reflecting underground excavation damage and then frequent intermittent disturbance failure is proposed.True triaxial static compression and intermittent disturbance tests are carried out on monzogabbro.The effects of intermediate principal stress and amplitude on the strength characteristics,deformation characteristics,failure characteristics,and precursors of monzogabbro are analyzed,intermediate principal stress and amplitude increase monzogabbro strength and tensile fracture mechanism.Rapid increases in microseismic parameters during rock loading can be precursors for intermittent rock disturbance.Based on the experimental result,the new damage fractional elements and method with considering crack initiation stress and crack unstable stress as initiation and acceleration condition of intermittent disturbance irreversible deformation are proposed.A novel three-dimensional disturbance fractional deterioration model considering the intermediate principal stress effect and intermittent disturbance damage effect is established,and the model predicted results align well with the experimental results.The sensitivity of stress states and model parameters is further explored,and the intermittent disturbance behaviors at different f are predicted.This study provides valuable theoretical bases for the stability analysis of deep mining engineering under dynamic loads.
文摘This article describes the solution procedure of the fractional Pade-Ⅱ equation and generalized Zakharov equation(GSEs)using the sine-cosine method.Pade-Ⅱ is an important nonlinear wave equation modeling unidirectional propagation of long-wave in dispersive media and GSEs are used to model the interaction between one-dimensional high,and low-frequency waves.Classes of trigonometric and hyperbolic function solutions in fractional calculus are discussed.Graphical simulations of the numerical solutions are flaunted by MATLAB.
基金supported by the National Natural Science Foundation of China(62061008,62071496,61901530)。
文摘Dear Editor,Dynamics and digital circuit implementation of the fractional-order Lorenz system are investigated by employing Adomian decomposition method(ADM).Dynamics of the fractional-order Lorenz system with derivative order and parameter varying is analyzed by means of Lyapunov exponents(LEs),bifurcation diagram.
基金supported by CAMS Innovation Fund for Medical Sciences(CIFMS)(2022–12M-C&TB-043).
文摘BACKGROUND The recently introduced ultrasonic flow ratio(UFR),is a novel fast computational method to derive fractional flow reserve(FFR)from intravascular ultrasound(IVUS)images.In the present study,we evaluate the diagnostic performance of UFR in patients with intermediate left main(LM)stenosis.METHODS This is a prospective,single center study enrolling consecutive patients with presence of intermediated LM lesions(diameter stenosis of 30%-80%by visual estimation)underwent IVUS and FFR measurement.An independent core laboratory assessed offline UFR and IVUS-derived minimal lumen area(MLA)in a blinded fashion.RESULTS Both UFR and FFR were successfully achieved in 41 LM patients(mean age,62.0±9.9 years,46.3%diabetes).An acceptable correlation between UFR and FFR was identified(r=0.688,P<0.0001),with an absolute numerical difference of 0.03(standard difference:0.01).The area under the curve(AUC)in diagnosis of physiologically significant coronary stenosis for UFR was 0.94(95%CI:0.87-1.01),which was significantly higher than angiographic identified stenosis>50%(AUC=0.66,P<0.001)and numerically higher than IVUS-derived MLA(AUC=0.82;P=0.09).Patient level diagnostic accuracy,sensitivity and specificity for UFR to identify FFR≤0.80 was 82.9%(95%CI:70.2-95.7),93.1%(95%CI:82.2-100.0),58.3%(95%CI:26.3-90.4),respectively.CONCLUSION In patients with intermediate LM diseases,UFR was proved to be associated with acceptable correlation and high accuracy with pressure wire-based FFR as standard reference.The present study supports the use of UFR for functional evaluation of intermediate LM stenosis.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.62071496,61901530,and 62061008)the Natural Science Foundation of Hunan Province of China(Grant No.2020JJ5767).
文摘In recent years,fractional-order chaotic maps have been paid more attention in publications because of the memory effect.This paper presents a novel variable-order fractional sine map(VFSM)based on the discrete fractional calculus.Specially,the order is defined as an iterative function that incorporates the current state of the system.By analyzing phase diagrams,time sequences,bifurcations,Lyapunov exponents and fuzzy entropy complexity,the dynamics of the proposed map are investigated comparing with the constant-order fractional sine map.The results reveal that the variable order has a good effect on improving the chaotic performance,and it enlarges the range of available parameter values as well as reduces non-chaotic windows.Multiple coexisting attractors also enrich the dynamics of VFSM and prove its sensitivity to initial values.Moreover,the sequence generated by the proposed map passes the statistical test for pseudorandom number and shows strong robustness to parameter estimation,which proves the potential applications in the field of information security.
文摘This article proposes a novel fractional heterogeneous neural network by coupling a Rulkov neuron with a Hopfield neural network(FRHNN),utilizing memristors for emulating neural synapses.The study firstly demonstrates the coexistence of multiple firing patterns through phase diagrams,Lyapunov exponents(LEs),and bifurcation diagrams.Secondly,the parameter related firing behaviors are described through two-parameter bifurcation diagrams.Subsequently,local attraction basins reveal multi-stability phenomena related to initial values.Moreover,the proposed model is implemented on a microcomputer-based ARM platform,and the experimental results correspond to the numerical simulations.Finally,the article explores the application of digital watermarking for medical images,illustrating its features of excellent imperceptibility,extensive key space,and robustness against attacks including noise and cropping.
基金Project supported by the National Natural Science Foun dation of China(Grant No.11274398).
文摘A significant obstacle impeding the advancement of the time fractional Schrodinger equation lies in the challenge of determining its precise mathematical formulation.In order to address this,we undertake an exploration of the time fractional Schrodinger equation within the context of a non-Markovian environment.By leveraging a two-level atom as an illustrative case,we find that the choice to raise i to the order of the time derivative is inappropriate.In contrast to the conventional approach used to depict the dynamic evolution of quantum states in a non-Markovian environment,the time fractional Schrodinger equation,when devoid of fractional-order operations on the imaginary unit i,emerges as a more intuitively comprehensible framework in physics and offers greater simplicity in computational aspects.Meanwhile,we also prove that it is meaningless to study the memory of time fractional Schrodinger equation with time derivative 1<α≤2.It should be noted that we have not yet constructed an open system that can be fully described by the time fractional Schrodinger equation.This will be the focus of future research.Our study might provide a new perspective on the role of time fractional Schrodinger equation.
文摘Let B^(H) be a fractional Brownian motion with Hurst index 1/2≤H<1.In this paper,we consider the equation(called the Ornstein-Uhlenbeck process with a linear self-repelling drift)dX_(t)^(H)=dB_(t)^(H)+σ X_(t)^(H)dt+vdt-θ(∫_(0)^(t)(X_(t)^(H)-X_(s)^(H))ds)dt,whereθ<0,σ,v∈ℝ.The process is an analogue of self-attracting diffusion(Cranston,Le Jan.Math Ann,1995,303:87–93).Our main aim is to study the large time behaviors of the process.We show that the solution X^(H)diverges to infinity as t tends to infinity,and obtain the speed at which the process X^(H)diverges to infinity.
文摘The goal of this research is to develop a new,simplified analytical method known as the ARA-residue power series method for obtaining exact-approximate solutions employing Caputo type fractional partial differential equations(PDEs)with variable coefficient.ARA-transform is a robust and highly flexible generalization that unifies several existing transforms.The key concept behind this method is to create approximate series outcomes by implementing the ARA-transform and Taylor’s expansion.The process of finding approximations for dynamical fractional-order PDEs is challenging,but the ARA-residual power series technique magnifies this challenge by articulating the solution in a series pattern and then determining the series coefficients by employing the residual component and the limit at infinity concepts.This approach is effective and useful for solving a massive class of fractional-order PDEs.Five appealing implementations are taken into consideration to demonstrate the effectiveness of the projected technique in creating solitary series findings for the governing equations with variable coefficients.Additionally,several visualizations are drawn for different fractional-order values.Besides that,the estimated findings by the proposed technique are in close agreement with the exact outcomes.Finally,statistical analyses further validate the efficacy,dependability and steady interconnectivity of the suggested ARA-residue power series approach.
基金supported by the NSFC(12001252)the Jiangxi Provincial Natural Science Foundation(20232ACB211001)。
文摘This paper deals with the radial symmetry of positive solutions to the nonlocal problem(-Δ)_(γ)~su=b(x)f(u)in B_(1){0},u=h in R~N B_(1),where b:B_1→R is locally Holder continuous,radially symmetric and decreasing in the|x|direction,F:R→R is a Lipschitz function,h:B_1→R is radially symmetric,decreasing with respect to|x|in R^(N)/B_(1),B_(1) is the unit ball centered at the origin,and(-Δ)_γ~s is the weighted fractional Laplacian with s∈(0,1),γ∈[0,2s)defined by(-△)^(s)_(γ)u(x)=CN,slimδ→0+∫R^(N)/B_(δ)(x)u(x)-u(y)/|x-y|N+2s|y|^(r)dy.We consider the radial symmetry of isolated singular positive solutions to the nonlocal problem in whole space(-Δ)_(γ)^(s)u(x)=b(x)f(u)in R^(N)\{0},under suitable additional assumptions on b and f.Our symmetry results are derived by the method of moving planes,where the main difficulty comes from the weighted fractional Laplacian.Our results could be applied to get a sharp asymptotic for semilinear problems with the fractional Hardy operators(-Δ)^(s)u+μ/(|x|^(2s))u=b(x)f(u)in B_(1)\{0},u=h in R^(N)\B_(1),under suitable additional assumptions on b,f and h.
文摘The aim of this research is to demonstrate a novel scheme for approximating the Riemann-Liouville fractional integral operator.This would be achieved by first establishing a fractional-order version of the 2-point Trapezoidal rule and then by proposing another fractional-order version of the(n+1)-composite Trapezoidal rule.In particular,the so-called divided-difference formula is typically employed to derive the 2-point Trapezoidal rule,which has accordingly been used to derive a more accurate fractional-order formula called the(n+1)-composite Trapezoidal rule.Additionally,in order to increase the accuracy of the proposed approximations by reducing the true errors,we incorporate the so-called Romberg integration,which is an extrapolation formula of the Trapezoidal rule for integration,into our proposed approaches.Several numerical examples are provided and compared with a modern definition of the Riemann-Liouville fractional integral operator to illustrate the efficacy of our scheme.
基金the National Key Research and Development Program of China(No.2021YFB2600704)the National Natural Science Foundation of China(No.52171272)the Significant Science and Technology Project of the Ministry of Water Resources of China(No.SKS-2022112).
文摘Anovel accuratemethod is proposed to solve a broad variety of linear and nonlinear(1+1)-dimensional and(2+1)-dimensional multi-term time-fractional partial differential equations with spatial operators of anisotropic diffusivity.For(1+1)-dimensional problems,analytical solutions that satisfy the boundary requirements are derived.Such solutions are numerically calculated using the trigonometric basis approximation for(2+1)-dimensional problems.With the aid of these analytical or numerical approximations,the original problems can be converted into the fractional ordinary differential equations,and solutions to the fractional ordinary differential equations are approximated by modified radial basis functions with time-dependent coefficients.An efficient backward substitution strategy that was previously provided for a single fractional ordinary differential equation is then used to solve the corresponding systems.The straightforward quasilinearization technique is applied to handle nonlinear issues.Numerical experiments demonstrate the suggested algorithm’s superior accuracy and efficiency.
基金supported by National Natural Science Foundation of China(12271277)the Open Research Fund of Key Laboratory of Nonlinear Analysis&Applications(Central China Normal University),Ministry of Education,China.
文摘In this article,we consider the diffusion equation with multi-term time-fractional derivatives.We first derive,by a subordination principle for the solution,that the solution is positive when the initial value is non-negative.As an application,we prove the uniqueness of solution to an inverse problem of determination of the temporally varying source term by integral type information in a subdomain.Finally,several numerical experiments are presented to show the accuracy and efficiency of the algorithm.