Molten plastics are characterised with high viscosity and low thermal conductivity. Applying falling film pyrolysis reactor to deal with waste plastics can not only improve heat transfer efficiency, but also solve the...Molten plastics are characterised with high viscosity and low thermal conductivity. Applying falling film pyrolysis reactor to deal with waste plastics can not only improve heat transfer efficiency, but also solve the flow problem. In this work, the pyrolysis process of molten polypropylene (PP) in a vertical falling film reactor is experimentally studied, and the influence of heating temperature on pyrolysis products is discussed. It has been found that with the temperature increases from 550 ℃ to 625 ℃, the yield of pyrolysis oil decreases from 74.4 wt% ( 4- 2.2 wt/%) to 53.5 wt% (± 1.3 wt%). The major compositions of the pyrolysis oil are C9, C12 and C18, and β-scission reactions are predominant. The content of the light fraction C6-C12 of pyrolysis oil is 69.7 wt%. Compared with other pyrolysis reactors, the yield ofoil from vertical falling film pyrolysis reactor is slightly higher than that from tubular reactor, equal to that from rotary kiln reactor, and slightly lower than that in medium fluidised-bed reactor.展开更多
In this work,a novel constitutive model is developed within the framework of fractional plasticity to delineate the coupling between inelastic deformation and damage of quasi-brittle materials.Faced with the common ch...In this work,a novel constitutive model is developed within the framework of fractional plasticity to delineate the coupling between inelastic deformation and damage of quasi-brittle materials.Faced with the common challenge of determining plastic flow direction,we resort herein to the Riemann–Liouville definition of fractional derivatives,instead of introducing an additional plastic potential.The pre-peak hardening behavior is described using an exponential function,while the post-peak softening response is viewed as the consequence of material damage.For describing damage evolution,a damage criterion is constructed in terms of plastic volume dilation related to micro-crack growth.This is conducive to supply a new insight for describing the complex influence of the non-orthogonality of plastic flow on damage evolution.For numerical applications,a semi-implicit return mapping algorithm is proposed.The predictive performance of the model is evaluated by comparing numerical simulations with experimental data under various loading paths.展开更多
基金Supported by the National Natural Science Foundation of China(51503154)Major Projects of China Water Pollution Control and Treatment Science and Technology(2017ZX07202005)the Shanghai Municipal Science and Technology Commission Fund for improving the economy in the Yangtze River Delta region(12195811100)
文摘Molten plastics are characterised with high viscosity and low thermal conductivity. Applying falling film pyrolysis reactor to deal with waste plastics can not only improve heat transfer efficiency, but also solve the flow problem. In this work, the pyrolysis process of molten polypropylene (PP) in a vertical falling film reactor is experimentally studied, and the influence of heating temperature on pyrolysis products is discussed. It has been found that with the temperature increases from 550 ℃ to 625 ℃, the yield of pyrolysis oil decreases from 74.4 wt% ( 4- 2.2 wt/%) to 53.5 wt% (± 1.3 wt%). The major compositions of the pyrolysis oil are C9, C12 and C18, and β-scission reactions are predominant. The content of the light fraction C6-C12 of pyrolysis oil is 69.7 wt%. Compared with other pyrolysis reactors, the yield ofoil from vertical falling film pyrolysis reactor is slightly higher than that from tubular reactor, equal to that from rotary kiln reactor, and slightly lower than that in medium fluidised-bed reactor.
基金This work has been jointly supported by the Fundamental Research Funds for the Central Universities(B210203014)the National Key Research and Development Program of China(2017YFC1501100)the National Natural Science Foundation of China(Grant No.11872172).
文摘In this work,a novel constitutive model is developed within the framework of fractional plasticity to delineate the coupling between inelastic deformation and damage of quasi-brittle materials.Faced with the common challenge of determining plastic flow direction,we resort herein to the Riemann–Liouville definition of fractional derivatives,instead of introducing an additional plastic potential.The pre-peak hardening behavior is described using an exponential function,while the post-peak softening response is viewed as the consequence of material damage.For describing damage evolution,a damage criterion is constructed in terms of plastic volume dilation related to micro-crack growth.This is conducive to supply a new insight for describing the complex influence of the non-orthogonality of plastic flow on damage evolution.For numerical applications,a semi-implicit return mapping algorithm is proposed.The predictive performance of the model is evaluated by comparing numerical simulations with experimental data under various loading paths.