Adaptive fractional polynomial modeling of general correlated outcomes is formulated to address nonlinearity in means, variances/dispersions, and correlations. Means and variances/dispersions are modeled using general...Adaptive fractional polynomial modeling of general correlated outcomes is formulated to address nonlinearity in means, variances/dispersions, and correlations. Means and variances/dispersions are modeled using generalized linear models in fixed effects/coefficients. Correlations are modeled using random effects/coefficients. Nonlinearity is addressed using power transforms of primary (untransformed) predictors. Parameter estimation is based on extended linear mixed modeling generalizing both generalized estimating equations and linear mixed modeling. Models are evaluated using likelihood cross-validation (LCV) scores and are generated adaptively using a heuristic search controlled by LCV scores. Cases covered include linear, Poisson, logistic, exponential, and discrete regression of correlated continuous, count/rate, dichotomous, positive continuous, and discrete numeric outcomes treated as normally, Poisson, Bernoulli, exponentially, and discrete numerically distributed, respectively. Example analyses are also generated for these five cases to compare adaptive random effects/coefficients modeling of correlated outcomes to previously developed adaptive modeling based on directly specified covariance structures. Adaptive random effects/coefficients modeling substantially outperforms direct covariance modeling in the linear, exponential, and discrete regression example analyses. It generates equivalent results in the logistic regression example analyses and it is substantially outperformed in the Poisson regression case. Random effects/coefficients modeling of correlated outcomes can provide substantial improvements in model selection compared to directly specified covariance modeling. However, directly specified covariance modeling can generate competitive or substantially better results in some cases while usually requiring less computation time.展开更多
Regression models for survival time data involve estimation of the hazard rate as a function of predictor variables and associated slope parameters. An adaptive approach is formulated for such hazard regression modeli...Regression models for survival time data involve estimation of the hazard rate as a function of predictor variables and associated slope parameters. An adaptive approach is formulated for such hazard regression modeling. The hazard rate is modeled using fractional polynomials, that is, linear combinations of products of power transforms of time together with other available predictors. These fractional polynomial models are restricted to generating positive-valued hazard rates and decreasing survival times. Exponentially distributed survival times are a special case. Parameters are estimated using maximum likelihood estimation allowing for right censored survival times. Models are evaluated and compared using likelihood cross-validation (LCV) scores. LCV scores and tolerance parameters are used to control an adaptive search through alternative fractional polynomial hazard rate models to identify effective models for the underlying survival time data. These methods are demonstrated using two different survival time data sets including survival times for lung cancer patients and for multiple myeloma patients. For the lung cancer data, the hazard rate depends distinctly on time. However, controlling for cell type provides a distinct improvement while the hazard rate depends only on cell type and no longer on time. Furthermore, Cox regression is unable to identify a cell type effect. For the multiple myeloma data, the hazard rate also depends distinctly on time. Moreover, consideration of hemoglobin at diagnosis provides a distinct improvement, the hazard rate still depends distinctly on time, and hemoglobin distinctly moderates the effect of time on the hazard rate. These results indicate that adaptive hazard rate modeling can provide unique insights into survival time data.展开更多
Recurrent event time data and more general multiple event time data are commonly analyzed using extensions of Cox regression, or proportional hazards regression, as used with single event time data. These methods trea...Recurrent event time data and more general multiple event time data are commonly analyzed using extensions of Cox regression, or proportional hazards regression, as used with single event time data. These methods treat covariates, either time-invariant or time-varying, as having multiplicative effects while general dependence on time is left un-estimated. An adaptive approach is formulated for analyzing multiple event time data. Conditional hazard rates are modeled in terms of dependence on both time and covariates using fractional polynomials restricted so that the conditional hazard rates are positive-valued and so that excess time probability functions (generalizing survival functions for single event times) are decreasing. Maximum likelihood is used to estimate parameters adjusting for right censored event times. Likelihood cross-validation (LCV) scores are used to compare models. Adaptive searches through alternate conditional hazard rate models are controlled by LCV scores combined with tolerance parameters. These searches identify effective models for the underlying multiple event time data. Conditional hazard regression is demonstrated using data on times between tumor recurrence for bladder cancer patients. Analyses of theory-based models for these data using extensions of Cox regression provide conflicting results on effects to treatment group and the initial number of tumors. On the other hand, fractional polynomial analyses of these theory-based models provide consistent results identifying significant effects to treatment group and initial number of tumors using both model-based and robust empirical tests. Adaptive analyses further identify distinct moderation by group of the effect of tumor order and an additive effect to group after controlling for nonlinear effects to initial number of tumors and tumor order. Results of example analyses indicate that adaptive conditional hazard rate modeling can generate useful insights into multiple event time data.展开更多
Recurrent event time data and more general multiple event time data are commonly analyzed using extensions of Cox regression, or proportional hazards regression, as used with single event time data. These methods trea...Recurrent event time data and more general multiple event time data are commonly analyzed using extensions of Cox regression, or proportional hazards regression, as used with single event time data. These methods treat covariates, either time-invariant or time-varying, as having multiplicative effects while general dependence on time is left un-estimated. An adaptive approach is formulated for analyzing multiple event time data. Conditional hazard rates are modeled in terms of dependence on both time and covariates using fractional polynomials restricted so that the conditional hazard rates are positive-valued and so that excess time probability functions (generalizing survival functions for single event times) are decreasing. Maximum likelihood is used to estimate parameters adjusting for right censored event times. Likelihood cross-validation (LCV) scores are used to compare models. Adaptive searches through alternate conditional hazard rate models are controlled by LCV scores combined with tolerance parameters. These searches identify effective models for the underlying multiple event time data. Conditional hazard regression is demonstrated using data on times between tumor recurrence for bladder cancer patients. Analyses of theory-based models for these data using extensions of Cox regression provide conflicting results on effects to treatment group and the initial number of tumors. On the other hand, fractional polynomial analyses of these theory-based models provide consistent results identifying significant effects to treatment group and initial number of tumors using both model-based and robust empirical tests. Adaptive analyses further identify distinct moderation by group of the effect of tumor order and an additive effect to group after controlling for nonlinear effects to initial number of tumors and tumor order. Results of example analyses indicate that adaptive conditional hazard rate modeling can generate useful insights into multiple event time data.展开更多
The lungs CT scan is used to visualize the spread of the disease across the lungs to obtain better knowledge of the state of the COVID-19 infection.Accurately diagnosing of COVID-19 disease is a complex challenge that...The lungs CT scan is used to visualize the spread of the disease across the lungs to obtain better knowledge of the state of the COVID-19 infection.Accurately diagnosing of COVID-19 disease is a complex challenge that medical system face during the pandemic time.To address this problem,this paper proposes a COVID-19 image enhancement based on Mittag-Leffler-Chebyshev polynomial as pre-processing step for COVID-19 detection and segmentation.The proposed approach comprises the MittagLeffler sum convoluted with Chebyshev polynomial.The idea for using the proposed image enhancement model is that it improves images with low graylevel changes by estimating the probability of each pixel.The proposed image enhancement technique is tested on a variety of lungs computed tomography(CT)scan dataset of varying quality to demonstrate that it is robust and can resist significant quality fluctuations.The blind/referenceless image spatial quality evaluator(BRISQUE),and the natural image quality evaluator(NIQE)measures for CT scans were 38.78,and 7.43 respectively.According to the findings,the proposed image enhancement model produces the best image quality ratings.Overall,this model considerably enhances the details of the given datasets,and it may be able to assist medical professionals in the diagnosing process.展开更多
With the aid of Riemann–Liouville fractional calculus theory,fractional order Savitzky–Golay differentiation(FOSGD) is calculated and applied to pretreat near infrared(NIR) spectra in order to improve the perfor...With the aid of Riemann–Liouville fractional calculus theory,fractional order Savitzky–Golay differentiation(FOSGD) is calculated and applied to pretreat near infrared(NIR) spectra in order to improve the performance of multivariate calibrations.Similar to integral order Savitzky–Golay differentiation(IOSGD),FOSGD is obtained by fitting a spectral curve in a moving window with a polynomial function to estimate its coefficients and then carrying out the weighted average of the spectral curve in the window with the coefficients.Three NIR datasets including diesel,wheat and corn datasets were utilized to test this method.The results showed that FOSGD,which is easy to compute,is a general method to obtain Savitzky–Golay smoothing,fractional order and integral order differentiations.Fractional order differentiation computation to the NIR spectra often improves the performance of the PLS model with smaller RMSECV and RMSEP than integral order ones,especially for physical properties of interest,such as density,cetane number and hardness.展开更多
文摘Adaptive fractional polynomial modeling of general correlated outcomes is formulated to address nonlinearity in means, variances/dispersions, and correlations. Means and variances/dispersions are modeled using generalized linear models in fixed effects/coefficients. Correlations are modeled using random effects/coefficients. Nonlinearity is addressed using power transforms of primary (untransformed) predictors. Parameter estimation is based on extended linear mixed modeling generalizing both generalized estimating equations and linear mixed modeling. Models are evaluated using likelihood cross-validation (LCV) scores and are generated adaptively using a heuristic search controlled by LCV scores. Cases covered include linear, Poisson, logistic, exponential, and discrete regression of correlated continuous, count/rate, dichotomous, positive continuous, and discrete numeric outcomes treated as normally, Poisson, Bernoulli, exponentially, and discrete numerically distributed, respectively. Example analyses are also generated for these five cases to compare adaptive random effects/coefficients modeling of correlated outcomes to previously developed adaptive modeling based on directly specified covariance structures. Adaptive random effects/coefficients modeling substantially outperforms direct covariance modeling in the linear, exponential, and discrete regression example analyses. It generates equivalent results in the logistic regression example analyses and it is substantially outperformed in the Poisson regression case. Random effects/coefficients modeling of correlated outcomes can provide substantial improvements in model selection compared to directly specified covariance modeling. However, directly specified covariance modeling can generate competitive or substantially better results in some cases while usually requiring less computation time.
文摘Regression models for survival time data involve estimation of the hazard rate as a function of predictor variables and associated slope parameters. An adaptive approach is formulated for such hazard regression modeling. The hazard rate is modeled using fractional polynomials, that is, linear combinations of products of power transforms of time together with other available predictors. These fractional polynomial models are restricted to generating positive-valued hazard rates and decreasing survival times. Exponentially distributed survival times are a special case. Parameters are estimated using maximum likelihood estimation allowing for right censored survival times. Models are evaluated and compared using likelihood cross-validation (LCV) scores. LCV scores and tolerance parameters are used to control an adaptive search through alternative fractional polynomial hazard rate models to identify effective models for the underlying survival time data. These methods are demonstrated using two different survival time data sets including survival times for lung cancer patients and for multiple myeloma patients. For the lung cancer data, the hazard rate depends distinctly on time. However, controlling for cell type provides a distinct improvement while the hazard rate depends only on cell type and no longer on time. Furthermore, Cox regression is unable to identify a cell type effect. For the multiple myeloma data, the hazard rate also depends distinctly on time. Moreover, consideration of hemoglobin at diagnosis provides a distinct improvement, the hazard rate still depends distinctly on time, and hemoglobin distinctly moderates the effect of time on the hazard rate. These results indicate that adaptive hazard rate modeling can provide unique insights into survival time data.
文摘Recurrent event time data and more general multiple event time data are commonly analyzed using extensions of Cox regression, or proportional hazards regression, as used with single event time data. These methods treat covariates, either time-invariant or time-varying, as having multiplicative effects while general dependence on time is left un-estimated. An adaptive approach is formulated for analyzing multiple event time data. Conditional hazard rates are modeled in terms of dependence on both time and covariates using fractional polynomials restricted so that the conditional hazard rates are positive-valued and so that excess time probability functions (generalizing survival functions for single event times) are decreasing. Maximum likelihood is used to estimate parameters adjusting for right censored event times. Likelihood cross-validation (LCV) scores are used to compare models. Adaptive searches through alternate conditional hazard rate models are controlled by LCV scores combined with tolerance parameters. These searches identify effective models for the underlying multiple event time data. Conditional hazard regression is demonstrated using data on times between tumor recurrence for bladder cancer patients. Analyses of theory-based models for these data using extensions of Cox regression provide conflicting results on effects to treatment group and the initial number of tumors. On the other hand, fractional polynomial analyses of these theory-based models provide consistent results identifying significant effects to treatment group and initial number of tumors using both model-based and robust empirical tests. Adaptive analyses further identify distinct moderation by group of the effect of tumor order and an additive effect to group after controlling for nonlinear effects to initial number of tumors and tumor order. Results of example analyses indicate that adaptive conditional hazard rate modeling can generate useful insights into multiple event time data.
文摘Recurrent event time data and more general multiple event time data are commonly analyzed using extensions of Cox regression, or proportional hazards regression, as used with single event time data. These methods treat covariates, either time-invariant or time-varying, as having multiplicative effects while general dependence on time is left un-estimated. An adaptive approach is formulated for analyzing multiple event time data. Conditional hazard rates are modeled in terms of dependence on both time and covariates using fractional polynomials restricted so that the conditional hazard rates are positive-valued and so that excess time probability functions (generalizing survival functions for single event times) are decreasing. Maximum likelihood is used to estimate parameters adjusting for right censored event times. Likelihood cross-validation (LCV) scores are used to compare models. Adaptive searches through alternate conditional hazard rate models are controlled by LCV scores combined with tolerance parameters. These searches identify effective models for the underlying multiple event time data. Conditional hazard regression is demonstrated using data on times between tumor recurrence for bladder cancer patients. Analyses of theory-based models for these data using extensions of Cox regression provide conflicting results on effects to treatment group and the initial number of tumors. On the other hand, fractional polynomial analyses of these theory-based models provide consistent results identifying significant effects to treatment group and initial number of tumors using both model-based and robust empirical tests. Adaptive analyses further identify distinct moderation by group of the effect of tumor order and an additive effect to group after controlling for nonlinear effects to initial number of tumors and tumor order. Results of example analyses indicate that adaptive conditional hazard rate modeling can generate useful insights into multiple event time data.
基金This research was supported by the Deanship of Scientific Research,Imam Mohammad Ibn Saud Islamic University(IMSIU),Saudi Arabia,Grant No.(21-13-18-056).
文摘The lungs CT scan is used to visualize the spread of the disease across the lungs to obtain better knowledge of the state of the COVID-19 infection.Accurately diagnosing of COVID-19 disease is a complex challenge that medical system face during the pandemic time.To address this problem,this paper proposes a COVID-19 image enhancement based on Mittag-Leffler-Chebyshev polynomial as pre-processing step for COVID-19 detection and segmentation.The proposed approach comprises the MittagLeffler sum convoluted with Chebyshev polynomial.The idea for using the proposed image enhancement model is that it improves images with low graylevel changes by estimating the probability of each pixel.The proposed image enhancement technique is tested on a variety of lungs computed tomography(CT)scan dataset of varying quality to demonstrate that it is robust and can resist significant quality fluctuations.The blind/referenceless image spatial quality evaluator(BRISQUE),and the natural image quality evaluator(NIQE)measures for CT scans were 38.78,and 7.43 respectively.According to the findings,the proposed image enhancement model produces the best image quality ratings.Overall,this model considerably enhances the details of the given datasets,and it may be able to assist medical professionals in the diagnosing process.
基金supported by Science and Technology Commission of Shanghai Municipality (No.14142201400)
文摘With the aid of Riemann–Liouville fractional calculus theory,fractional order Savitzky–Golay differentiation(FOSGD) is calculated and applied to pretreat near infrared(NIR) spectra in order to improve the performance of multivariate calibrations.Similar to integral order Savitzky–Golay differentiation(IOSGD),FOSGD is obtained by fitting a spectral curve in a moving window with a polynomial function to estimate its coefficients and then carrying out the weighted average of the spectral curve in the window with the coefficients.Three NIR datasets including diesel,wheat and corn datasets were utilized to test this method.The results showed that FOSGD,which is easy to compute,is a general method to obtain Savitzky–Golay smoothing,fractional order and integral order differentiations.Fractional order differentiation computation to the NIR spectra often improves the performance of the PLS model with smaller RMSECV and RMSEP than integral order ones,especially for physical properties of interest,such as density,cetane number and hardness.