期刊文献+
共找到35,764篇文章
< 1 2 250 >
每页显示 20 50 100
A Cauchy Problem for Some Fractional q-Difference Equations with Nonlocal Conditions
1
作者 Maryam Al-Yami 《American Journal of Computational Mathematics》 2016年第2期159-165,共7页
In this paper, we discussed the problem of nonlocal value for nonlinear fractional q-difference equation. The classical tools of fixed point theorems such as Krasnoselskii’s theorem and Banach’s contraction principl... In this paper, we discussed the problem of nonlocal value for nonlinear fractional q-difference equation. The classical tools of fixed point theorems such as Krasnoselskii’s theorem and Banach’s contraction principle are used. At the end of the manuscript, we have an example that illustrates the key findings. 展开更多
关键词 Cauchy Problem fractional q-difference Equation Nonlocal Conditions Fixed Point Krasnoselskii’s Theorem
下载PDF
Model reduction of fractional impedance spectra for time–frequency analysis of batteries, fuel cells, and supercapacitors 被引量:1
2
作者 Weiheng Li Qiu-An Huang +6 位作者 Yuxuan Bai Jia Wang Linlin Wang Yuyu Liu Yufeng Zhao Xifei Li Jiujun Zhang 《Carbon Energy》 SCIE EI CAS CSCD 2024年第1期108-141,共34页
Joint time–frequency analysis is an emerging method for interpreting the underlying physics in fuel cells,batteries,and supercapacitors.To increase the reliability of time–frequency analysis,a theoretical correlatio... Joint time–frequency analysis is an emerging method for interpreting the underlying physics in fuel cells,batteries,and supercapacitors.To increase the reliability of time–frequency analysis,a theoretical correlation between frequency-domain stationary analysis and time-domain transient analysis is urgently required.The present work formularizes a thorough model reduction of fractional impedance spectra for electrochemical energy devices involving not only the model reduction from fractional-order models to integer-order models and from high-to low-order RC circuits but also insight into the evolution of the characteristic time constants during the whole reduction process.The following work has been carried out:(i)the model-reduction theory is addressed for typical Warburg elements and RC circuits based on the continued fraction expansion theory and the response error minimization technique,respectively;(ii)the order effect on the model reduction of typical Warburg elements is quantitatively evaluated by time–frequency analysis;(iii)the results of time–frequency analysis are confirmed to be useful to determine the reduction order in terms of the kinetic information needed to be captured;and(iv)the results of time–frequency analysis are validated for the model reduction of fractional impedance spectra for lithium-ion batteries,supercapacitors,and solid oxide fuel cells.In turn,the numerical validation has demonstrated the powerful function of the joint time–frequency analysis.The thorough model reduction of fractional impedance spectra addressed in the present work not only clarifies the relationship between time-domain transient analysis and frequency-domain stationary analysis but also enhances the reliability of the joint time–frequency analysis for electrochemical energy devices. 展开更多
关键词 battery fuel cell supercapacitor fractional impedance spectroscopy model reduction time-frequency analysis
下载PDF
Intermittent disturbance mechanical behavior and fractional deterioration mechanical model of rock under complex true triaxial stress paths 被引量:1
3
作者 Zhi Zheng Hongyu Xu +3 位作者 Kai Zhang Guangliang Feng Qiang Zhang Yufei Zhao 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第1期117-136,共20页
Mechanical excavation,blasting,adjacent rockburst and fracture slip that occur during mining excavation impose dynamic loads on the rock mass,leading to further fracture of damaged surrounding rock in three-dimensiona... Mechanical excavation,blasting,adjacent rockburst and fracture slip that occur during mining excavation impose dynamic loads on the rock mass,leading to further fracture of damaged surrounding rock in three-dimensional high-stress and even causing disasters.Therefore,a novel complex true triaxial static-dynamic combined loading method reflecting underground excavation damage and then frequent intermittent disturbance failure is proposed.True triaxial static compression and intermittent disturbance tests are carried out on monzogabbro.The effects of intermediate principal stress and amplitude on the strength characteristics,deformation characteristics,failure characteristics,and precursors of monzogabbro are analyzed,intermediate principal stress and amplitude increase monzogabbro strength and tensile fracture mechanism.Rapid increases in microseismic parameters during rock loading can be precursors for intermittent rock disturbance.Based on the experimental result,the new damage fractional elements and method with considering crack initiation stress and crack unstable stress as initiation and acceleration condition of intermittent disturbance irreversible deformation are proposed.A novel three-dimensional disturbance fractional deterioration model considering the intermediate principal stress effect and intermittent disturbance damage effect is established,and the model predicted results align well with the experimental results.The sensitivity of stress states and model parameters is further explored,and the intermittent disturbance behaviors at different f are predicted.This study provides valuable theoretical bases for the stability analysis of deep mining engineering under dynamic loads. 展开更多
关键词 True triaxial static and disturbance test Mechanical properties Failure mechanism and precursor Intermittent disturbance effect fractional mechanical model
下载PDF
Analytical solutions fractional order partial differential equations arising in fluid dynamics
4
作者 Sidheswar Behera Jasvinder Singh Pal Virdi 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2024年第3期458-468,共11页
This article describes the solution procedure of the fractional Pade-Ⅱ equation and generalized Zakharov equation(GSEs)using the sine-cosine method.Pade-Ⅱ is an important nonlinear wave equation modeling unidirectio... This article describes the solution procedure of the fractional Pade-Ⅱ equation and generalized Zakharov equation(GSEs)using the sine-cosine method.Pade-Ⅱ is an important nonlinear wave equation modeling unidirectional propagation of long-wave in dispersive media and GSEs are used to model the interaction between one-dimensional high,and low-frequency waves.Classes of trigonometric and hyperbolic function solutions in fractional calculus are discussed.Graphical simulations of the numerical solutions are flaunted by MATLAB. 展开更多
关键词 the sine-cosine method He's fractional derivative analytical solution fractional Pade-Ⅱequation fractional generalized Zakharov equation
下载PDF
Dynamics of the Fractional-Order Lorenz System Based on Adomian Decomposition Method and Its DSP Implementation
5
作者 Shaobo He Kehui Sun Huihai Wang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第5期1298-1300,共3页
Dear Editor,Dynamics and digital circuit implementation of the fractional-order Lorenz system are investigated by employing Adomian decomposition method(ADM).Dynamics of the fractional-order Lorenz system with derivat... Dear Editor,Dynamics and digital circuit implementation of the fractional-order Lorenz system are investigated by employing Adomian decomposition method(ADM).Dynamics of the fractional-order Lorenz system with derivative order and parameter varying is analyzed by means of Lyapunov exponents(LEs),bifurcation diagram. 展开更多
关键词 DIAGRAM fractional system
下载PDF
Diagnostic performance of intravascular ultrasound-based fractional flow reserve in evaluating of intermediate left main stenosis
6
作者 Yong-Gang SUI Cheng YANG +11 位作者 Chang-Dong GUAN Yan-Lu XU Na-Qiong WU Wei-Xian YANG Yong-Jian WU Ke-Fei DOU Yue-Jin YANG Shu-Bin QIAO Wei YU Bo XU Sheng-Xian TU Jie QIAN 《Journal of Geriatric Cardiology》 SCIE CAS CSCD 2024年第1期34-43,共10页
BACKGROUND The recently introduced ultrasonic flow ratio(UFR),is a novel fast computational method to derive fractional flow reserve(FFR)from intravascular ultrasound(IVUS)images.In the present study,we evaluate the d... BACKGROUND The recently introduced ultrasonic flow ratio(UFR),is a novel fast computational method to derive fractional flow reserve(FFR)from intravascular ultrasound(IVUS)images.In the present study,we evaluate the diagnostic performance of UFR in patients with intermediate left main(LM)stenosis.METHODS This is a prospective,single center study enrolling consecutive patients with presence of intermediated LM lesions(diameter stenosis of 30%-80%by visual estimation)underwent IVUS and FFR measurement.An independent core laboratory assessed offline UFR and IVUS-derived minimal lumen area(MLA)in a blinded fashion.RESULTS Both UFR and FFR were successfully achieved in 41 LM patients(mean age,62.0±9.9 years,46.3%diabetes).An acceptable correlation between UFR and FFR was identified(r=0.688,P<0.0001),with an absolute numerical difference of 0.03(standard difference:0.01).The area under the curve(AUC)in diagnosis of physiologically significant coronary stenosis for UFR was 0.94(95%CI:0.87-1.01),which was significantly higher than angiographic identified stenosis>50%(AUC=0.66,P<0.001)and numerically higher than IVUS-derived MLA(AUC=0.82;P=0.09).Patient level diagnostic accuracy,sensitivity and specificity for UFR to identify FFR≤0.80 was 82.9%(95%CI:70.2-95.7),93.1%(95%CI:82.2-100.0),58.3%(95%CI:26.3-90.4),respectively.CONCLUSION In patients with intermediate LM diseases,UFR was proved to be associated with acceptable correlation and high accuracy with pressure wire-based FFR as standard reference.The present study supports the use of UFR for functional evaluation of intermediate LM stenosis. 展开更多
关键词 STENOSIS FLOW fractional
下载PDF
A novel variable-order fractional chaotic map and its dynamics
7
作者 唐周青 贺少波 +3 位作者 王会海 孙克辉 姚昭 吴先明 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第3期281-290,共10页
In recent years,fractional-order chaotic maps have been paid more attention in publications because of the memory effect.This paper presents a novel variable-order fractional sine map(VFSM)based on the discrete fracti... In recent years,fractional-order chaotic maps have been paid more attention in publications because of the memory effect.This paper presents a novel variable-order fractional sine map(VFSM)based on the discrete fractional calculus.Specially,the order is defined as an iterative function that incorporates the current state of the system.By analyzing phase diagrams,time sequences,bifurcations,Lyapunov exponents and fuzzy entropy complexity,the dynamics of the proposed map are investigated comparing with the constant-order fractional sine map.The results reveal that the variable order has a good effect on improving the chaotic performance,and it enlarges the range of available parameter values as well as reduces non-chaotic windows.Multiple coexisting attractors also enrich the dynamics of VFSM and prove its sensitivity to initial values.Moreover,the sequence generated by the proposed map passes the statistical test for pseudorandom number and shows strong robustness to parameter estimation,which proves the potential applications in the field of information security. 展开更多
关键词 CHAOS fractional difference variable order MULTISTABILITY COMPLEXITY
下载PDF
Fractional-order heterogeneous memristive Rulkov neuronal network and its medical image watermarking application
8
作者 丁大为 牛炎 +4 位作者 张红伟 杨宗立 王金 王威 王谋媛 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第5期306-314,共9页
This article proposes a novel fractional heterogeneous neural network by coupling a Rulkov neuron with a Hopfield neural network(FRHNN),utilizing memristors for emulating neural synapses.The study firstly demonstrates... This article proposes a novel fractional heterogeneous neural network by coupling a Rulkov neuron with a Hopfield neural network(FRHNN),utilizing memristors for emulating neural synapses.The study firstly demonstrates the coexistence of multiple firing patterns through phase diagrams,Lyapunov exponents(LEs),and bifurcation diagrams.Secondly,the parameter related firing behaviors are described through two-parameter bifurcation diagrams.Subsequently,local attraction basins reveal multi-stability phenomena related to initial values.Moreover,the proposed model is implemented on a microcomputer-based ARM platform,and the experimental results correspond to the numerical simulations.Finally,the article explores the application of digital watermarking for medical images,illustrating its features of excellent imperceptibility,extensive key space,and robustness against attacks including noise and cropping. 展开更多
关键词 fractional order MEMRISTORS Rulkov neuron medical image watermarking
下载PDF
Memory effect in time fractional Schrödinger equation
9
作者 祖传金 余向阳 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第2期216-221,共6页
A significant obstacle impeding the advancement of the time fractional Schrodinger equation lies in the challenge of determining its precise mathematical formulation.In order to address this,we undertake an exploratio... A significant obstacle impeding the advancement of the time fractional Schrodinger equation lies in the challenge of determining its precise mathematical formulation.In order to address this,we undertake an exploration of the time fractional Schrodinger equation within the context of a non-Markovian environment.By leveraging a two-level atom as an illustrative case,we find that the choice to raise i to the order of the time derivative is inappropriate.In contrast to the conventional approach used to depict the dynamic evolution of quantum states in a non-Markovian environment,the time fractional Schrodinger equation,when devoid of fractional-order operations on the imaginary unit i,emerges as a more intuitively comprehensible framework in physics and offers greater simplicity in computational aspects.Meanwhile,we also prove that it is meaningless to study the memory of time fractional Schrodinger equation with time derivative 1<α≤2.It should be noted that we have not yet constructed an open system that can be fully described by the time fractional Schrodinger equation.This will be the focus of future research.Our study might provide a new perspective on the role of time fractional Schrodinger equation. 展开更多
关键词 time fractional Schrodinger equation memory effect non-Markovian environment
下载PDF
THE LONG TIME BEHAVIOR OF THE FRACTIONAL ORNSTEIN-UHLENBECK PROCESS WITH LINEAR SELF-REPELLING DRIFT
10
作者 夏晓宇 闫理坦 杨晴 《Acta Mathematica Scientia》 SCIE CSCD 2024年第2期671-685,共15页
Let B^(H) be a fractional Brownian motion with Hurst index 1/2≤H<1.In this paper,we consider the equation(called the Ornstein-Uhlenbeck process with a linear self-repelling drift)dX_(t)^(H)=dB_(t)^(H)+σ X_(t)^(H)... Let B^(H) be a fractional Brownian motion with Hurst index 1/2≤H<1.In this paper,we consider the equation(called the Ornstein-Uhlenbeck process with a linear self-repelling drift)dX_(t)^(H)=dB_(t)^(H)+σ X_(t)^(H)dt+vdt-θ(∫_(0)^(t)(X_(t)^(H)-X_(s)^(H))ds)dt,whereθ<0,σ,v∈ℝ.The process is an analogue of self-attracting diffusion(Cranston,Le Jan.Math Ann,1995,303:87–93).Our main aim is to study the large time behaviors of the process.We show that the solution X^(H)diverges to infinity as t tends to infinity,and obtain the speed at which the process X^(H)diverges to infinity. 展开更多
关键词 fractional Brownian motion stochastic difference equations rate of convergence ASYMPTOTIC
下载PDF
A New Scheme of the ARA Transform for Solving Fractional-Order Waves-Like Equations Involving Variable Coefficients
11
作者 Yu-Ming Chu Sobia Sultana +2 位作者 Shazia Karim Saima Rashid Mohammed Shaaf Alharthi 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第1期761-791,共31页
The goal of this research is to develop a new,simplified analytical method known as the ARA-residue power series method for obtaining exact-approximate solutions employing Caputo type fractional partial differential e... The goal of this research is to develop a new,simplified analytical method known as the ARA-residue power series method for obtaining exact-approximate solutions employing Caputo type fractional partial differential equations(PDEs)with variable coefficient.ARA-transform is a robust and highly flexible generalization that unifies several existing transforms.The key concept behind this method is to create approximate series outcomes by implementing the ARA-transform and Taylor’s expansion.The process of finding approximations for dynamical fractional-order PDEs is challenging,but the ARA-residual power series technique magnifies this challenge by articulating the solution in a series pattern and then determining the series coefficients by employing the residual component and the limit at infinity concepts.This approach is effective and useful for solving a massive class of fractional-order PDEs.Five appealing implementations are taken into consideration to demonstrate the effectiveness of the projected technique in creating solitary series findings for the governing equations with variable coefficients.Additionally,several visualizations are drawn for different fractional-order values.Besides that,the estimated findings by the proposed technique are in close agreement with the exact outcomes.Finally,statistical analyses further validate the efficacy,dependability and steady interconnectivity of the suggested ARA-residue power series approach. 展开更多
关键词 ARA-transform Caputo fractional derivative residue-power seriesmethod analytical solutions statistical analysis
下载PDF
THE RADIAL SYMMETRY OF POSITIVE SOLUTIONS FOR SEMILINEAR PROBLEMS INVOLVING WEIGHTED FRACTIONAL LAPLACIANS
12
作者 王英 邱妍静 尹青苹 《Acta Mathematica Scientia》 SCIE CSCD 2024年第3期1020-1035,共16页
This paper deals with the radial symmetry of positive solutions to the nonlocal problem(-Δ)_(γ)~su=b(x)f(u)in B_(1){0},u=h in R~N B_(1),where b:B_1→R is locally Holder continuous,radially symmetric and decreasing i... This paper deals with the radial symmetry of positive solutions to the nonlocal problem(-Δ)_(γ)~su=b(x)f(u)in B_(1){0},u=h in R~N B_(1),where b:B_1→R is locally Holder continuous,radially symmetric and decreasing in the|x|direction,F:R→R is a Lipschitz function,h:B_1→R is radially symmetric,decreasing with respect to|x|in R^(N)/B_(1),B_(1) is the unit ball centered at the origin,and(-Δ)_γ~s is the weighted fractional Laplacian with s∈(0,1),γ∈[0,2s)defined by(-△)^(s)_(γ)u(x)=CN,slimδ→0+∫R^(N)/B_(δ)(x)u(x)-u(y)/|x-y|N+2s|y|^(r)dy.We consider the radial symmetry of isolated singular positive solutions to the nonlocal problem in whole space(-Δ)_(γ)^(s)u(x)=b(x)f(u)in R^(N)\{0},under suitable additional assumptions on b and f.Our symmetry results are derived by the method of moving planes,where the main difficulty comes from the weighted fractional Laplacian.Our results could be applied to get a sharp asymptotic for semilinear problems with the fractional Hardy operators(-Δ)^(s)u+μ/(|x|^(2s))u=b(x)f(u)in B_(1)\{0},u=h in R^(N)\B_(1),under suitable additional assumptions on b,f and h. 展开更多
关键词 radial symmetry fractional Laplacian method of moving planes
下载PDF
Composite Fractional Trapezoidal Rule with Romberg Integration
13
作者 Iqbal M.Batiha Rania Saadeh +3 位作者 Iqbal H.Jebril Ahmad Qazza Abeer A.Al-Nana Shaher Momani 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第9期2729-2745,共17页
The aim of this research is to demonstrate a novel scheme for approximating the Riemann-Liouville fractional integral operator.This would be achieved by first establishing a fractional-order version of the 2-point Tra... The aim of this research is to demonstrate a novel scheme for approximating the Riemann-Liouville fractional integral operator.This would be achieved by first establishing a fractional-order version of the 2-point Trapezoidal rule and then by proposing another fractional-order version of the(n+1)-composite Trapezoidal rule.In particular,the so-called divided-difference formula is typically employed to derive the 2-point Trapezoidal rule,which has accordingly been used to derive a more accurate fractional-order formula called the(n+1)-composite Trapezoidal rule.Additionally,in order to increase the accuracy of the proposed approximations by reducing the true errors,we incorporate the so-called Romberg integration,which is an extrapolation formula of the Trapezoidal rule for integration,into our proposed approaches.Several numerical examples are provided and compared with a modern definition of the Riemann-Liouville fractional integral operator to illustrate the efficacy of our scheme. 展开更多
关键词 Composite fractional Trapezoidal rule Romberg integration
下载PDF
A Novel Accurate Method forMulti-Term Time-Fractional Nonlinear Diffusion Equations in Arbitrary Domains
14
作者 Tao Hu Cheng Huang +2 位作者 Sergiy Reutskiy Jun Lu Ji Lin 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第2期1521-1548,共28页
Anovel accuratemethod is proposed to solve a broad variety of linear and nonlinear(1+1)-dimensional and(2+1)-dimensional multi-term time-fractional partial differential equations with spatial operators of anisotropic ... Anovel accuratemethod is proposed to solve a broad variety of linear and nonlinear(1+1)-dimensional and(2+1)-dimensional multi-term time-fractional partial differential equations with spatial operators of anisotropic diffusivity.For(1+1)-dimensional problems,analytical solutions that satisfy the boundary requirements are derived.Such solutions are numerically calculated using the trigonometric basis approximation for(2+1)-dimensional problems.With the aid of these analytical or numerical approximations,the original problems can be converted into the fractional ordinary differential equations,and solutions to the fractional ordinary differential equations are approximated by modified radial basis functions with time-dependent coefficients.An efficient backward substitution strategy that was previously provided for a single fractional ordinary differential equation is then used to solve the corresponding systems.The straightforward quasilinearization technique is applied to handle nonlinear issues.Numerical experiments demonstrate the suggested algorithm’s superior accuracy and efficiency. 展开更多
关键词 Müntz polynomial basis backward substitutionmethod collocationmethod meshlessmethod fractional equation
下载PDF
Altered spontaneous brain activity patterns in hypertensive retinopathy using fractional amplitude of low-frequency fluctuations:a functional magnetic resonance imaging study
15
作者 Xue-Lin Wang Xu-Jun Zheng +8 位作者 Li-Juan Zhang Jin-Yu Hu Hong Wei Qian Ling Liang-Qi He Cheng Chen Yi-Xin Wang Xu Chen Yi Shao 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2024年第9期1665-1674,共10页
AIM:To study functional brain abnormalities in patients with hypertensive retinopathy(HR)and to discuss the pathophysiological mechanisms of HR by fractional amplitude of low-frequency fluctuations(fALFFs)method.METHO... AIM:To study functional brain abnormalities in patients with hypertensive retinopathy(HR)and to discuss the pathophysiological mechanisms of HR by fractional amplitude of low-frequency fluctuations(fALFFs)method.METHODS:Twenty HR patients and 20 healthy controls(HCs)were respectively recruited.The age,gender,and educational background characteristics of the two groups were similar.After functional magnetic resonance imaging(fMRI)scanning,the subjects’spontaneous brain activity was evaluated with the fALFF method.Receiver operating characteristic(ROC)curve analysis was used to classify the data.Further,we used Pearson’s correlation analysis to explore the relationship between fALFF values in specific brain regions and clinical behaviors in patients with HR.RESULTS:The brain areas of the HR group with lower fALFF values than HCs were the right orbital part of the middle frontal gyrus(RO-MFG)and right lingual gyrus.In contrast,the values of fALFFs in the left middle temporal gyrus(MTG),left superior temporal pole(STP),left middle frontal gyrus(MFG),left superior marginal gyrus(SMG),left superior parietal lobule(SPL),and right supplementary motor area(SMA)were higher in the HR group.The results of a t-test showed that the average values of fALFFs were statistically significantly different in the HR group and HC group(P<0.001).The fALFF values of the left middle frontal gyrus in HR patients were positively correlated with anxiety scores(r=0.9232;P<0.0001)and depression scores(r=0.9682;P<0.0001).CONCLUSION:fALFF values in multiple brain regions of HR patients are abnormal,suggesting that these brain regions in HR patients may be dysfunctional,which may help to reveal the pathophysiological mechanisms of HR. 展开更多
关键词 hypertensive retinopathy fractional amplitude of low-frequency fluctuation brain region magnetic resonance imaging
下载PDF
AN EXPLANATION ON FOUR NEW DEFINITIONS OF FRACTIONAL OPERATORS
16
作者 Jiangen LIU Fazhan GENG 《Acta Mathematica Scientia》 SCIE CSCD 2024年第4期1271-1279,共9页
Fractional calculus has drawn more attentions of mathematicians and engineers in recent years.A lot of new fractional operators were used to handle various practical problems.In this article,we mainly study four new f... Fractional calculus has drawn more attentions of mathematicians and engineers in recent years.A lot of new fractional operators were used to handle various practical problems.In this article,we mainly study four new fractional operators,namely the CaputoFabrizio operator,the Atangana-Baleanu operator,the Sun-Hao-Zhang-Baleanu operator and the generalized Caputo type operator under the frame of the k-Prabhakar fractional integral operator.Usually,the theory of the k-Prabhakar fractional integral is regarded as a much broader than classical fractional operator.Here,we firstly give a series expansion of the k-Prabhakar fractional integral by means of the k-Riemann-Liouville integral.Then,a connection between the k-Prabhakar fractional integral and the four new fractional operators of the above mentioned was shown,respectively.In terms of the above analysis,we can obtain this a basic fact that it only needs to consider the k-Prabhakar fractional integral to cover these results from the four new fractional operators. 展开更多
关键词 k-Prabhakar fractional operator Caputo-Fabrizio operator Atangana-Baleanu operator Sun-Hao-Zhang-Baleanu operator generalized Caputo type operator
下载PDF
A Collocation Technique via Pell-Lucas Polynomials to Solve Fractional Differential EquationModel for HIV/AIDS with Treatment Compartment
17
作者 Gamze Yıldırım Suayip Yüzbası 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第10期281-310,共30页
In this study,a numerical method based on the Pell-Lucas polynomials(PLPs)is developed to solve the fractional order HIV/AIDS epidemic model with a treatment compartment.The HIV/AIDS mathematical model with a treatmen... In this study,a numerical method based on the Pell-Lucas polynomials(PLPs)is developed to solve the fractional order HIV/AIDS epidemic model with a treatment compartment.The HIV/AIDS mathematical model with a treatment compartment is divided into five classes,namely,susceptible patients(S),HIV-positive individuals(I),individuals with full-blown AIDS but not receiving ARV treatment(A),individuals being treated(T),and individuals who have changed their sexual habits sufficiently(R).According to the method,by utilizing the PLPs and the collocation points,we convert the fractional order HIV/AIDS epidemic model with a treatment compartment into a nonlinear system of the algebraic equations.Also,the error analysis is presented for the Pell-Lucas approximation method.The aim of this study is to observe the behavior of five populations after 200 days when drug treatment is applied to HIV-infectious and full-blown AIDS people.To demonstrate the usefulness of this method,the applications are made on the numerical example with the help of MATLAB.In addition,four cases of the fractional order derivative(p=1,p=0.95,p=0.9,p=0.85)are examined in the range[0,200].Owing to applications,we figured out that the outcomes have quite decent errors.Also,we understand that the errors decrease when the value of N increases.The figures in this study are created in MATLAB.The outcomes indicate that the presented method is reasonably sufficient and correct. 展开更多
关键词 Collocation method fractional differential equations HIV/AIDS epidemic model Pell-Lucas polynomials
下载PDF
THE SPARSE REPRESENTATION RELATED WITH FRACTIONAL HEAT EQUATIONS
18
作者 曲伟 钱涛 +1 位作者 梁应德 李澎涛 《Acta Mathematica Scientia》 SCIE CSCD 2024年第2期567-582,共16页
This study introduces a pre-orthogonal adaptive Fourier decomposition(POAFD)to obtain approximations and numerical solutions to the fractional Laplacian initial value problem and the extension problem of Caffarelli an... This study introduces a pre-orthogonal adaptive Fourier decomposition(POAFD)to obtain approximations and numerical solutions to the fractional Laplacian initial value problem and the extension problem of Caffarelli and Silvestre(generalized Poisson equation).As a first step,the method expands the initial data function into a sparse series of the fundamental solutions with fast convergence,and,as a second step,makes use of the semigroup or the reproducing kernel property of each of the expanding entries.Experiments show the effectiveness and efficiency of the proposed series solutions. 展开更多
关键词 reproducing kernel Hilbert space DICTIONARY sparse representation approximation to the identity fractional heat equations
下载PDF
Binding Number and Fractional k-Factors of Graphs
19
作者 Renying Chang 《Journal of Applied Mathematics and Physics》 2024年第7期2594-2600,共7页
In this paper, we consider the relationship between the binding number and the existence of fractional k-factors of graphs. The binding number of G is defined by Woodall as bind(G)=min{ | NG(X) || X |:∅≠X⊆V(G) }. It ... In this paper, we consider the relationship between the binding number and the existence of fractional k-factors of graphs. The binding number of G is defined by Woodall as bind(G)=min{ | NG(X) || X |:∅≠X⊆V(G) }. It is proved that a graph G has a fractional 1-factor if bind(G)≥1and has a fractional k-factor if bind(G)≥k−1k. Furthermore, it is showed that both results are best possible in some sense. 展开更多
关键词 Binding Number fractional k-Factor fractional Matching Independent Set Covering Set
下载PDF
Multiple Solutions for a Class of Singular Boundary Value Problems of Hadamard Fractional Differential Systems with p-Laplacian Operator
20
作者 Chen Wang Yansheng Liu 《Journal of Applied Mathematics and Physics》 2024年第9期3114-3134,共21页
This paper discusses the existence and multiplicity of positive solutions for a class of singular boundary value problems of Hadamard fractional differential systems involving the p-Laplacian operator. First, for the ... This paper discusses the existence and multiplicity of positive solutions for a class of singular boundary value problems of Hadamard fractional differential systems involving the p-Laplacian operator. First, for the sake of overcoming the singularity, sequences of approximate solutions to the boundary value problem are obtained by applying the fixed point index theory on the cone. Next, it is demonstrated that these sequences of approximate solutions are uniformly bounded and equicontinuous. The main results are then established through the Ascoli-Arzelà theorem. Ultimately, an instance is worked out to test and verify the validity of the main results. 展开更多
关键词 Multiple Solutions Fixed Point Index Theory Nonlinear fractional Differential Systems Hadamard fractional Derivative
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部