期刊文献+
共找到46篇文章
< 1 2 3 >
每页显示 20 50 100
THE FRACTIONAL QUADRATIC-FORM IDENTITY AND BI-HAMILTONIAN STRUCTURES OF AN INTEGRABLE COUPLING OF THE FRACTIONAL COUPLED BURGERS HIERARCHY
1
作者 Dong Xia Tiecheng Xia Desheng Li 《Annals of Differential Equations》 2014年第4期438-448,共11页
Based on a general isospectral problem of fractional order and the fractional quadratic-form identity by Yue and Xia, the new integrable coupling of fractional coupled Burgers hierarchy and its fractional bi-Hamiltoni... Based on a general isospectral problem of fractional order and the fractional quadratic-form identity by Yue and Xia, the new integrable coupling of fractional coupled Burgers hierarchy and its fractional bi-Hamiltonian structures are obtained. 展开更多
关键词 fractional quadratic-form identity fractional bi-Hamiltonian struc-ture integrable coupling fractional coupled Burgers hierarchy
原文传递
THE SPARSE REPRESENTATION RELATED WITH FRACTIONAL HEAT EQUATIONS
2
作者 曲伟 钱涛 +1 位作者 梁应德 李澎涛 《Acta Mathematica Scientia》 SCIE CSCD 2024年第2期567-582,共16页
This study introduces a pre-orthogonal adaptive Fourier decomposition(POAFD)to obtain approximations and numerical solutions to the fractional Laplacian initial value problem and the extension problem of Caffarelli an... This study introduces a pre-orthogonal adaptive Fourier decomposition(POAFD)to obtain approximations and numerical solutions to the fractional Laplacian initial value problem and the extension problem of Caffarelli and Silvestre(generalized Poisson equation).As a first step,the method expands the initial data function into a sparse series of the fundamental solutions with fast convergence,and,as a second step,makes use of the semigroup or the reproducing kernel property of each of the expanding entries.Experiments show the effectiveness and efficiency of the proposed series solutions. 展开更多
关键词 reproducing kernel Hilbert space DICTIONARY sparse representation approximation to the identity fractional heat equations
下载PDF
GENERALIZED FRACTIONAL TRACE VARIATIONAL IDENTITY AND A NEW FRACTIONAL INTEGRABLE COUPLINGS OF SOLITON HIERARCHY 被引量:3
3
作者 魏含玉 夏铁成 《Acta Mathematica Scientia》 SCIE CSCD 2014年第1期53-64,共12页
Based on fractional isospectral problems and general bilinear forms, the gener-alized fractional trace identity is presented. Then, a new explicit Lie algebra is introduced for which the new fractional integrable coup... Based on fractional isospectral problems and general bilinear forms, the gener-alized fractional trace identity is presented. Then, a new explicit Lie algebra is introduced for which the new fractional integrable couplings of a fractional soliton hierarchy are derived from a fractional zero-curvature equation. Finally, we obtain the fractional Hamiltonian structures of the fractional integrable couplings of the soliton hierarchy. 展开更多
关键词 generalized fractional trace variational identity fractional integrable couplings soliton hierarchy Hamiltonian structure
下载PDF
The quadratic-form identity for constructing Hamiltonian structures of the Guo hierarchy 被引量:3
4
作者 董焕河 张宁 《Chinese Physics B》 SCIE EI CAS CSCD 2006年第9期1919-1926,共8页
The trace identity is extended to the quadratic-form identity. The Hamiltonian structures of the multi-component Guo hierarchy, integrable coupling of Guo hierarchy and (2+l)-dimensional Guo hierarchy are obtained ... The trace identity is extended to the quadratic-form identity. The Hamiltonian structures of the multi-component Guo hierarchy, integrable coupling of Guo hierarchy and (2+l)-dimensional Guo hierarchy are obtained by the quadraticform identity. The method can be used to produce the Hamiltonian structures of the other integrable couplings or multi-component hierarchies. 展开更多
关键词 Hamiltonian structure Guo's hierarchy quadratic-form identity
下载PDF
A New Loop Algebra and Corresponding Computing Formula of Constant γ in Quadratic-Form Identity
5
作者 GUO Fu-Kui DONG Huan-He 《Communications in Theoretical Physics》 SCIE CAS CSCD 2007年第6期981-986,共6页
A new loop algebra containing four arbitrary constants is presented, -whose commutation operation is concise, and the corresponding computing formula of constant γ in the quadratic-form identity is obtained in this p... A new loop algebra containing four arbitrary constants is presented, -whose commutation operation is concise, and the corresponding computing formula of constant γ in the quadratic-form identity is obtained in this paper, which can be reduced to computing formula of constant γ in the trace identity. As application, a new Liouville integrable hierarchy, which can be reduced to AKNS hierarchy is derived. 展开更多
关键词 loop algebra computing formula of constant γ quadratic-form identity
下载PDF
关于一个新的Ro-Ramanujan型连分数
6
作者 张英凡 《绵阳师范学院学报》 2024年第11期1-7,共7页
引入新的Rogers-Ramanujan型恒等式,通过猜测相关量和证明递归关系,给出了一个新的Rogers-Ramanujan型连分数,对先前Rogers-Ramanujan的连分数展开列表进行扩充.
关键词 q级数 Rogers-Ramanujan型恒等式 连分数展开 递归公式
下载PDF
A Pohozaev Identity for the Fractional Hnon System
7
作者 Pei MA Feng Quan LI Yan LI 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2017年第10期1382-1396,共15页
In this paper, we study the Pohozaev identity associated with a Henon-Lane-Emden sys- tem involving the fractional Laplacian:{(-△)^su=|x|^aυ^p,x ∈Ω,(-△)^sυ=|x|^av^p,x ∈Ω u=υ=0, x∈R^b/Ω,in a star-s... In this paper, we study the Pohozaev identity associated with a Henon-Lane-Emden sys- tem involving the fractional Laplacian:{(-△)^su=|x|^aυ^p,x ∈Ω,(-△)^sυ=|x|^av^p,x ∈Ω u=υ=0, x∈R^b/Ω,in a star-shaped and bounded domain Ω for s E (0, 1). As an application of our identity, we deduce the nonexistence of positive solutions in the critical and supercritieal cases. 展开更多
关键词 Pohozaev identity fractional Laplacian Henon system nonexistence of solutions
原文传递
New existence of multi-spike solutions for the fractional Schrodinger equations
8
作者 Qing Guo Yuxia Guo Shuangjie Peng 《Science China Mathematics》 SCIE CSCD 2023年第5期977-1002,共26页
We consider the following fractional Schr¨odinger equation:(-Δ)^(s)u+V(y)u=u^(p);u>0 in R^(N);(0.1)where s ∈(0,1),1<p<N+2s/N-2s,and V(y)is a positive potential function and satisfies some expansion con... We consider the following fractional Schr¨odinger equation:(-Δ)^(s)u+V(y)u=u^(p);u>0 in R^(N);(0.1)where s ∈(0,1),1<p<N+2s/N-2s,and V(y)is a positive potential function and satisfies some expansion condition at infinity.Under the Lyapunov-Schmidt reduction framework,we construct two kinds of multi-spike solutions for(0.1).The first k-spike solution uk is concentrated at the vertices of the regular k-polygon in the(y1;y2)-plane with k and the radius large enough.Then we show that uk is non-degenerate in our special symmetric workspace,and glue it with an n-spike solution,whose centers lie in another circle in the(y3;y4)-plane,to construct infinitely many multi-spike solutions of new type.The nonlocal property of(-Δ)^(s)is in sharp contrast to the classical Schr¨odinger equations.A striking difference is that although the nonlinear exponent in(0.1)is Sobolev-subcritical,the algebraic(not exponential)decay at infinity of the ground states makes the estimates more subtle and difficult to control.Moreover,due to the non-locality of the fractional operator,we cannot establish the local Pohozaev identities for the solution u directly,but we address its corresponding harmonic extension at the same time.Finally,to construct new solutions we need pointwise estimates of new approximate solutions.To this end,we introduce a special weighted norm,and give the proof in quite a different way. 展开更多
关键词 NON-DEGENERACY fractional Schrodinger equations Pohozaev identity Lyapunov-Schmidt reduction
原文传递
Mathematical Aspects of SU (2) and SO(3,R) Derived from Two-Mode Realization in Coordinate-Invariant Form
9
作者 Alfred Wünsche 《Journal of Modern Physics》 CAS 2023年第3期361-413,共53页
Some mathematical aspects of the Lie groups SU (2) and in realization by two pairs of boson annihilation and creation operators and in the parametrization by the vector parameter  instead of the Euler angles and ... Some mathematical aspects of the Lie groups SU (2) and in realization by two pairs of boson annihilation and creation operators and in the parametrization by the vector parameter  instead of the Euler angles and the vector parameter c of Fyodorov are developed. The one-dimensional root scheme of SU (2) is embedded in two-dimensional root schemes of some higher Lie groups, in particular, in inhomogeneous Lie groups and is represented in text and figures. The two-dimensional fundamental representation of SU (2) is calculated and from it the composition law for the product of two transformations and the most important decompositions of general transformations in special ones are derived. Then the transition from representation of SU (2) to of is made where in addition to the parametrization by vector  the convenient parametrization by vector c is considered and the connections are established. The measures for invariant integration are derived for and for SU (2) . The relations between 3D-rotations of a unit sphere to fractional linear transformations of a plane by stereographic projection are discussed. All derivations and representations are tried to make in coordinate-invariant way. 展开更多
关键词 Boson Operators Lie Algebra Root Diagram Invariant Integration Hamilton-Cayley identity Cayley-Gibbs-Fyodorov Parametrization Composition Law Quaternion Stereographic Projection fractional Linear Transformation
下载PDF
一类任意m×n阶矩形网络的电特性 被引量:5
10
作者 谭志中 谭震 《物理学报》 SCIE EI CAS CSCD 北大核心 2020年第2期72-86,共15页
任意矩形电路网络中的电位分布问题一直是科学研究的难题.本研究发展了研究电阻网络的递推-变换(RT)理论使之能够用于计算任意m×n阶电路网络模型.研究了一类含有任意边界的m×n阶矩形网络的电位分布及等效电阻,这是一个之前一... 任意矩形电路网络中的电位分布问题一直是科学研究的难题.本研究发展了研究电阻网络的递推-变换(RT)理论使之能够用于计算任意m×n阶电路网络模型.研究了一类含有任意边界的m×n阶矩形网络的电位分布及等效电阻,这是一个之前一直没有解决的深刻问题,因为之前的研究依赖于规则的边界条件或一个含有零电阻的边界条件.其他方法如格林函数技术和拉普拉斯矩阵方法计算电位函数比较困难,研究含有任意边界的电阻网络也是不可能的.电位函数问题是自然科学和工程技术领域研究的一个重要内容,如拉普拉斯方程的求解问题就是其中之一.本文给出了含有一条任意边界的m×n矩形电阻网络的节点电位函数解析式,并且得到了任意两节点间的等效电阻公式,同时导出了一些特殊情形下的结果.在对不同结果的比较研究时,得到了一个新的数学分式恒等式. 展开更多
关键词 复杂网络 递推-变换理论 矩阵方程 电位函数 边界条件 分式恒等式
下载PDF
3个Lucas数乘积和的恒等变换注记 被引量:2
11
作者 及万会 《贵州师范大学学报(自然科学版)》 CAS 2005年第1期67-70,共4页
设Un,Vn是Lucas数,本文研究r为奇数时 3个广Lucas数乘积和变换问题,给r次(r=2s+1)恒等变换公式.
关键词 LUCAS数 乘积和 恒等变换 注记 奇数 公式
下载PDF
一类分式序列封闭形和式 被引量:2
12
作者 及万会 马东娟 《河北北方学院学报(自然科学版)》 2012年第2期9-12,共4页
利用反正切函数关系arctan F(n)-arctan F(n+1)=arctan (F(n)-F(n+1))/(1+F(n)F(n+1))得到一类反正切序列封闭形和式,利用微分法得到一类分式序列封闭形和式,并给出反正切级数与分式级数恒等式.
关键词 反正切函数 分式 序列 级数 封闭形 恒等式
下载PDF
一类正负相间分式序列封闭形和式 被引量:3
13
作者 及万会 张来萍 《河北北方学院学报(自然科学版)》 2012年第4期9-14,共6页
利用arctan F(n)+arctan F(n+1)=arctanF(n)+F(n+1)/1-F(n)F(n+1)得到正负相间反正切序列封闭形和式,用微分法得到正负相间分式序列封闭形和式,进而计给出正负相间反正切级数与分式级数和式。
关键词 反正切函数 正负相间 分式 序列 级数 封闭形 恒等式
下载PDF
关于4个Lucas数乘积和的恒等变换注记 被引量:1
14
作者 及万会 《天中学刊》 2004年第2期3-7,共5页
研究了4个Lucas数乘积和的恒等变换问题,给出了r次(r = 2s)恒等变换公式.
关键词 LUCAS数 部分分式 乘积和 形式幂级数 恒等变换
下载PDF
Chebyshev多项式分式变换之和
15
作者 及万会 李中宁 《西南民族大学学报(自然科学版)》 CAS 2007年第6期1210-1213,共4页
设Tn(x),Un(x)是Chebyshev多项式,本文研究Chebyshev多项式恒等式及其分式变换之和,得到有趣的恒等式.
关键词 CHEBYSHEV 多项式 恒等变换 分式
下载PDF
关于有理函数的部分分式展开 被引量:2
16
作者 常建明 《常熟高专学报》 2000年第4期16-21,共6页
有理函数是一类能求出原函数 (用初等函数表示)的重要函数类 ,其依据就是它有部分分式展开 ,然而一般的分析教材上却只讲有这个展开而无证明 ,或只是一笔带过 .本文提供一种展开的方法 ,其根据是完全初等的恒等变形及适量的多项式除法 .
关键词 有理函数 部分分式 等价代换
下载PDF
分数阶超Broer-Kaup-Kupershmidt族及其非线性可积耦合(英文)
17
作者 魏含玉 罗林 夏铁成 《工程数学学报》 CSCD 北大核心 2016年第4期428-440,共13页
基于超代数上的分数阶超迹恒等式,我们得到了分数阶超Broer-Kaup-Kupershmidt族及其超Hamilton结构,并且给出了分数阶超Broer-Kaup-Kupershmidt族的非线性可积耦合.本文的方法还可以应用于其它的分数阶超孤子族.
关键词 分数阶超迹恒等式 超Broer-Kaup-Kupershmidt族 超Hamilton结构 非线性可积耦合
下载PDF
一类分数阶Schrdinger-Possion方程组的Pohozaev等式
18
作者 杨敏波 郑雨 《浙江师范大学学报(自然科学版)》 CAS 2016年第1期34-37,共4页
建立了一类分数阶Schrdinger-Possion方程组的Pohozaev等式,利用临界点理论的方法,把一类分数阶Schrdinger-Possion方程组问题转化为具有非线性Neumann边值条件的椭圆方程组的问题,从而改进了经典的半线性情形的相应结论.
关键词 Schrodinger-Possion方程组 Pohozaev等式 分数阶Laplace算子 变分法
下载PDF
关于r个Lucas数的乘积和
19
作者 及万会 黑宝骊 《重庆文理学院学报(自然科学版)》 2007年第6期17-20,共4页
设Uj,Vj是Lucas数,本文研究r个广Lucas数乘积和变换问题,并利用发生函数方法给出了r个广Lucas数乘积和恒等变换公式.
关键词 LUCAS数 乘积和 形式幂级数 恒等变换
下载PDF
广义Chebyshev多项式分式变换之和
20
作者 及万会 《云南民族大学学报(自然科学版)》 CAS 2009年第2期105-108,共4页
设Tn(x),Un(x)是Chebyshev多项式,研究广义Chebyshev多项式恒等式及其分式变换之和,得到有趣的恒等式.
关键词 广义Chebyshev多项式 分式 变换
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部