In this paper,two crossover hybrid variable-order derivatives of the cancer model are developed.Grünwald-Letnikov approximation is used to approximate the hybrid fractional and variable-order fractional operators...In this paper,two crossover hybrid variable-order derivatives of the cancer model are developed.Grünwald-Letnikov approximation is used to approximate the hybrid fractional and variable-order fractional operators.The existence,uniqueness,and stability of the proposed model are discussed.Adams Bashfourth’s fifth-step method with a hybrid variable-order fractional operator is developed to study the proposed models.Comparative studies with generalized fifth-order Runge-Kutta method are given.Numerical examples and comparative studies to verify the applicability of the used methods and to demonstrate the simplicity of these approximations are presented.We have showcased the efficiency of the proposed method and garnered robust empirical support for our theoretical findings.展开更多
The outbreak of COVID-19 in 2019 resulted in numerous infections and deaths. In order to better study the transmission of COVID-19, this article adopts an improved fractional-order SIR model. Firstly, the properties o...The outbreak of COVID-19 in 2019 resulted in numerous infections and deaths. In order to better study the transmission of COVID-19, this article adopts an improved fractional-order SIR model. Firstly, the properties of the model are studied, including the feasible domain and bounded solutions of the system. Secondly, the stability of the system is discussed, among other things. Then, the GMMP method is introduced to obtain numerical solutions for the COVID-19 system and combined with the improved MH-NMSS-PSO parameter estimation method to fit the real data of Delhi, India from April 1, 2020 to June 30, 2020. The results show that the fitting effect is quite ideal. Finally, long-term predictions were made on the number of infections. We accurately estimate that the peak number of infections in Delhi, India, can reach around 2.1 million. This paper also compares the fitting performance of the integer-order COVID-19 model and the fractional-order COVID-19 model using the real data from Delhi. The results indicate that the fractional-order model with different orders, as we proposed, performs the best.展开更多
This paper investigates an improved SIR model for COVID-19 based on the Caputo fractional derivative. Firstly, the properties of the model are studied, including the feasible domain and bounded solutions of the system...This paper investigates an improved SIR model for COVID-19 based on the Caputo fractional derivative. Firstly, the properties of the model are studied, including the feasible domain and bounded solutions of the system. Secondly, the stability of the system is discussed, among other things. Then, the GMMP method is introduced to obtain numerical solutions for the COVID-19 system. Numerical simulations were conducted using MATLAB, and the results indicate that our model is valuable for studying virus transmission.展开更多
Mechanical excavation,blasting,adjacent rockburst and fracture slip that occur during mining excavation impose dynamic loads on the rock mass,leading to further fracture of damaged surrounding rock in three-dimensiona...Mechanical excavation,blasting,adjacent rockburst and fracture slip that occur during mining excavation impose dynamic loads on the rock mass,leading to further fracture of damaged surrounding rock in three-dimensional high-stress and even causing disasters.Therefore,a novel complex true triaxial static-dynamic combined loading method reflecting underground excavation damage and then frequent intermittent disturbance failure is proposed.True triaxial static compression and intermittent disturbance tests are carried out on monzogabbro.The effects of intermediate principal stress and amplitude on the strength characteristics,deformation characteristics,failure characteristics,and precursors of monzogabbro are analyzed,intermediate principal stress and amplitude increase monzogabbro strength and tensile fracture mechanism.Rapid increases in microseismic parameters during rock loading can be precursors for intermittent rock disturbance.Based on the experimental result,the new damage fractional elements and method with considering crack initiation stress and crack unstable stress as initiation and acceleration condition of intermittent disturbance irreversible deformation are proposed.A novel three-dimensional disturbance fractional deterioration model considering the intermediate principal stress effect and intermittent disturbance damage effect is established,and the model predicted results align well with the experimental results.The sensitivity of stress states and model parameters is further explored,and the intermittent disturbance behaviors at different f are predicted.This study provides valuable theoretical bases for the stability analysis of deep mining engineering under dynamic loads.展开更多
Joint time–frequency analysis is an emerging method for interpreting the underlying physics in fuel cells,batteries,and supercapacitors.To increase the reliability of time–frequency analysis,a theoretical correlatio...Joint time–frequency analysis is an emerging method for interpreting the underlying physics in fuel cells,batteries,and supercapacitors.To increase the reliability of time–frequency analysis,a theoretical correlation between frequency-domain stationary analysis and time-domain transient analysis is urgently required.The present work formularizes a thorough model reduction of fractional impedance spectra for electrochemical energy devices involving not only the model reduction from fractional-order models to integer-order models and from high-to low-order RC circuits but also insight into the evolution of the characteristic time constants during the whole reduction process.The following work has been carried out:(i)the model-reduction theory is addressed for typical Warburg elements and RC circuits based on the continued fraction expansion theory and the response error minimization technique,respectively;(ii)the order effect on the model reduction of typical Warburg elements is quantitatively evaluated by time–frequency analysis;(iii)the results of time–frequency analysis are confirmed to be useful to determine the reduction order in terms of the kinetic information needed to be captured;and(iv)the results of time–frequency analysis are validated for the model reduction of fractional impedance spectra for lithium-ion batteries,supercapacitors,and solid oxide fuel cells.In turn,the numerical validation has demonstrated the powerful function of the joint time–frequency analysis.The thorough model reduction of fractional impedance spectra addressed in the present work not only clarifies the relationship between time-domain transient analysis and frequency-domain stationary analysis but also enhances the reliability of the joint time–frequency analysis for electrochemical energy devices.展开更多
In recent years,fractional-order chaotic maps have been paid more attention in publications because of the memory effect.This paper presents a novel variable-order fractional sine map(VFSM)based on the discrete fracti...In recent years,fractional-order chaotic maps have been paid more attention in publications because of the memory effect.This paper presents a novel variable-order fractional sine map(VFSM)based on the discrete fractional calculus.Specially,the order is defined as an iterative function that incorporates the current state of the system.By analyzing phase diagrams,time sequences,bifurcations,Lyapunov exponents and fuzzy entropy complexity,the dynamics of the proposed map are investigated comparing with the constant-order fractional sine map.The results reveal that the variable order has a good effect on improving the chaotic performance,and it enlarges the range of available parameter values as well as reduces non-chaotic windows.Multiple coexisting attractors also enrich the dynamics of VFSM and prove its sensitivity to initial values.Moreover,the sequence generated by the proposed map passes the statistical test for pseudorandom number and shows strong robustness to parameter estimation,which proves the potential applications in the field of information security.展开更多
This article proposes a novel fractional heterogeneous neural network by coupling a Rulkov neuron with a Hopfield neural network(FRHNN),utilizing memristors for emulating neural synapses.The study firstly demonstrates...This article proposes a novel fractional heterogeneous neural network by coupling a Rulkov neuron with a Hopfield neural network(FRHNN),utilizing memristors for emulating neural synapses.The study firstly demonstrates the coexistence of multiple firing patterns through phase diagrams,Lyapunov exponents(LEs),and bifurcation diagrams.Secondly,the parameter related firing behaviors are described through two-parameter bifurcation diagrams.Subsequently,local attraction basins reveal multi-stability phenomena related to initial values.Moreover,the proposed model is implemented on a microcomputer-based ARM platform,and the experimental results correspond to the numerical simulations.Finally,the article explores the application of digital watermarking for medical images,illustrating its features of excellent imperceptibility,extensive key space,and robustness against attacks including noise and cropping.展开更多
In this study,a numerical method based on the Pell-Lucas polynomials(PLPs)is developed to solve the fractional order HIV/AIDS epidemic model with a treatment compartment.The HIV/AIDS mathematical model with a treatmen...In this study,a numerical method based on the Pell-Lucas polynomials(PLPs)is developed to solve the fractional order HIV/AIDS epidemic model with a treatment compartment.The HIV/AIDS mathematical model with a treatment compartment is divided into five classes,namely,susceptible patients(S),HIV-positive individuals(I),individuals with full-blown AIDS but not receiving ARV treatment(A),individuals being treated(T),and individuals who have changed their sexual habits sufficiently(R).According to the method,by utilizing the PLPs and the collocation points,we convert the fractional order HIV/AIDS epidemic model with a treatment compartment into a nonlinear system of the algebraic equations.Also,the error analysis is presented for the Pell-Lucas approximation method.The aim of this study is to observe the behavior of five populations after 200 days when drug treatment is applied to HIV-infectious and full-blown AIDS people.To demonstrate the usefulness of this method,the applications are made on the numerical example with the help of MATLAB.In addition,four cases of the fractional order derivative(p=1,p=0.95,p=0.9,p=0.85)are examined in the range[0,200].Owing to applications,we figured out that the outcomes have quite decent errors.Also,we understand that the errors decrease when the value of N increases.The figures in this study are created in MATLAB.The outcomes indicate that the presented method is reasonably sufficient and correct.展开更多
The numerical approach for finding the solution of fractional order systems of boundary value problems (BPVs) is derived in this paper. The implementation of the weighted residuals such as Galerkin, Least Square, and ...The numerical approach for finding the solution of fractional order systems of boundary value problems (BPVs) is derived in this paper. The implementation of the weighted residuals such as Galerkin, Least Square, and Collocation methods are included for solving fractional order differential equations, which is broadened to acquire the approximate solutions of fractional order systems with differentiable polynomials, namely Legendre polynomials, as basis functions. The algorithm of the residual formulations of matrix form can be coded efficiently. The interpretation of Caputo fractional derivatives is employed here. We have demonstrated these methods numerically through a few examples of linear and nonlinear BVPs. The results in absolute errors show that the present method efficiently finds the numerical solutions of fractional order systems of differential equations.展开更多
In this paper, we consider the Cauchy problem of 3-dimensional tropical climate model. This model reflects the interaction and coupling among the barotropic mode u, the first baroclinic mode v of the velocity and the ...In this paper, we consider the Cauchy problem of 3-dimensional tropical climate model. This model reflects the interaction and coupling among the barotropic mode u, the first baroclinic mode v of the velocity and the temperature θ. The systems with fractional dissipation studied here may arise in the modeling of geophysical circumstances. Mathematically these systems allow simultaneous examination of a family of systems with various levels of regularization. The aim here is the global strong solution with the least dissipation. By energy estimate and delicate analysis, we prove the existence of global solution under three different cases: first, with the help of damping terms, the global strong solution of the system with Λ<sup>2a</sup>u, Λ<sup>2β</sup>v and Λ<sup>2γ</sup> θ for;and second, the global strong solution of the system for with damping terms;finally, the global strong solution of the system for without any damping terms, which improve the known existence theory for this system.展开更多
In this paper, we study the solutions for variable-order time-fractional diffusion equations. A three-point combined compact difference (CCD) method is used to discretize the spatial variables to achieve sixth-order a...In this paper, we study the solutions for variable-order time-fractional diffusion equations. A three-point combined compact difference (CCD) method is used to discretize the spatial variables to achieve sixth-order accuracy, while the exponential-sum-approximation (ESA) is used to approximate the variable-order Caputo fractional derivative in the temporal direction, and a novel spatial sixth-order hybrid ESA-CCD method is implemented successfully. Finally, the accuracy of the proposed method is verified by numerical experiments.展开更多
We propose a theoretical study investigating the spread of the novel coronavirus(COVID-19)reported inWuhan City of China in 2019.We develop a mathematical model based on the novel corona virus’s characteristics and t...We propose a theoretical study investigating the spread of the novel coronavirus(COVID-19)reported inWuhan City of China in 2019.We develop a mathematical model based on the novel corona virus’s characteristics and then use fractional calculus to fractionalize it.Various fractional order epidemicmodels have been formulated and analyzed using a number of iterative and numerical approacheswhile the complications arise due to singular kernel.We use the well-known Caputo-Fabrizio operator for the purposes of fictionalization because this operator is based on the non-singular kernel.Moreover,to analyze the existence and uniqueness,we will use the well-known fixed point theory.We also prove that the considered model has positive and bounded solutions.We also draw some numerical simulations to verify the theoretical work via graphical representations.We believe that the proposed epidemic model will be helpful for health officials to take some positive steps to control contagious diseases.展开更多
The motive of these investigations is to provide the importance and significance of the fractional order(FO)derivatives in the nonlinear environmental and economic(NEE)model,i.e.,FO-NEE model.The dynamics of the NEE m...The motive of these investigations is to provide the importance and significance of the fractional order(FO)derivatives in the nonlinear environmental and economic(NEE)model,i.e.,FO-NEE model.The dynamics of the NEE model achieves more precise by using the form of the FO derivative.The investigations through the non-integer and nonlinear mathematical form to define the FO-NEE model are also provided in this study.The composition of the FO-NEEmodel is classified into three classes,execution cost of control,system competence of industrial elements and a new diagnostics technical exclusion cost.The mathematical FO-NEE system is numerically studied by using the artificial neural networks(ANNs)along with the Levenberg-Marquardt backpropagation method(ANNs-LMBM).Three different cases using the FO derivative have been examined to present the numerical performances of the FO-NEE model.The data is selected to solve the mathematical FO-NEE system is executed as 70%for training and 15%for both testing and certification.The exactness of the proposed ANNs-LMBM is observed through the comparison of the obtained and the Adams-Bashforth-Moulton database results.To ratify the aptitude,validity,constancy,exactness,and competence of the ANNs-LMBM,the numerical replications using the state transitions,regression,correlation,error histograms and mean square error are also described.展开更多
Considering the fractional-order and nonlinear characteristics of proton exchange membrane fuel cells(PEMFC),a fractional-order subspace identification method based on the ADE-BH optimization algorithm is proposed to ...Considering the fractional-order and nonlinear characteristics of proton exchange membrane fuel cells(PEMFC),a fractional-order subspace identification method based on the ADE-BH optimization algorithm is proposed to establish a fractional-order Hammerstein state-space model of PEMFCs.Herein,a Hammerstein model is constructed by connecting a linear module and a nonlinear module in series to precisely depict the nonlinear property of the PEMFC.During the modeling process,fractional-order theory is combined with subspace identification,and a Poisson filter is adopted to enable multi-order derivability of the data.A variable memory method is introduced to reduce computation time without losing precision.Additionally,to improve the optimization accuracy and avoid obtaining locally optimum solutions,a novel ADEBH algorithm is employed to optimize the unknown parameters in the identification method.In this algorithm,the Euclidean distance serves as the theoretical basis for updating the target vector in the absorption-generation operation of the black hole(BH)algorithm.Finally,simulations demonstrate that the proposed model has small output error and high accuracy,indicating that the model can accurately describe the electrical characteristics of the PEMFC process.展开更多
The current investigations provide the solutions of the nonlinear fractional order mathematical rape and its controlmodel using the strength of artificial neural networks(ANNs)along with the Levenberg-Marquardt backpr...The current investigations provide the solutions of the nonlinear fractional order mathematical rape and its controlmodel using the strength of artificial neural networks(ANNs)along with the Levenberg-Marquardt backpropagation approach(LMBA),i.e.,artificial neural networks-Levenberg-Marquardt backpropagation approach(ANNs-LMBA).The fractional order investigations have been presented to find more realistic results of the mathematical form of the rape and its control model.The differential mathematical form of the nonlinear fractional order mathematical rape and its control model has six classes:susceptible native girls,infected immature girls,susceptible knowledgeable girls,infected knowledgeable girls,susceptible rapist population and infective rapist population.The rape and its control differential system using three different fractional order values is authenticated to perform the correctness of ANNs-LMBA.The data is used to present the rape and its control differential system is designated as 70%for training,14%for authorization and 16%for testing.The obtained performances of the ANNs-LMBA are compared with the dataset of the Adams-Bashforth-Moulton scheme.To substantiate the consistency,aptitude,validity,exactness,and capability of the LMBA neural networks,the obtained numerical values are provided using the state transitions(STs),correlation,regression,mean square error(MSE)and error histograms(EHs).展开更多
According to the fact that the actual inductor and actual capacitor are fractional, the mathematical and state-space averaging models of fractional order Buck converters in continuous conduction mode(CCM) are construc...According to the fact that the actual inductor and actual capacitor are fractional, the mathematical and state-space averaging models of fractional order Buck converters in continuous conduction mode(CCM) are constructed by using fractional calculus theory. Firstly, the parameter conditions that ensure that the converter working in CCM is given and transfer functions are derived. Also, the inductor current and the output voltage are analyzed. Then the difference between the mathematical model and the circuit model are analyzed, and the effect of fractional order is studied by comparing the integer order with fractional order model. Finally, the dynamic behavior of the current-controlled Buck converter is investigated. Simulation experiments are achieved via the use of Matlab/Simulink. The experimental results verify the correctness of theoretical analysis, the order should be taken as a significant parameter. When the order is taken as a bifurcation parameter, the dynamic behavior of the converter will be affected and bifurcation points will be changed as order varies.展开更多
In this paper, the fractional-order mathematical model and the fractional-order state-space averaging model of the Buck-Boost converter in continuous conduction mode (CCM) are established based on the fractional cal...In this paper, the fractional-order mathematical model and the fractional-order state-space averaging model of the Buck-Boost converter in continuous conduction mode (CCM) are established based on the fractional calculus and the Adomian decomposition method. Some dynamical properties of the current-mode controlled fractional-order Buck- Boost converter are analysed. The simulation is accomplished by using SIMULINK. Numerical simulations are presented to verify the analytical results and we find that bifurcation points will be moved backward as α and β vary. At the same time, the simulation results show that the converter goes through different routes to chaos.展开更多
Recently,the memory elements-based circuits have been addressed frequently in the nonlinear circuit theory due to their unique behaviors.Thus,the modeling and characterizing of the mem-elements become essential.In thi...Recently,the memory elements-based circuits have been addressed frequently in the nonlinear circuit theory due to their unique behaviors.Thus,the modeling and characterizing of the mem-elements become essential.In this paper,the analysis of the multiple fractional-order voltage-controlled memcapacitors model in parallel connection is studied.Firstly,two fractional-order memcapacitors are connected in parallel,the equivalent model is derived,and the characteristic of the equivalent memcapacitor is analyzed in positive or negative connection.Then a new understanding manner according to different rate factor K and fractional orderαis derived to explain the equivalent modeling structure conveniently.Additionally,the negative order appears,which is a consequence of the combination of memcapacitors in different directions.Meanwhile,the equivalent parallel memcapacitance has been drawn to determine that multiple fractional-order memcapacitors could be calculated as one composite memcapacitor.Thus,an arbitrary fractional-order equivalent memcapacitor could be constructed by multiple fractional-order memcapacitors.展开更多
This paper investigates the stability of the Francis hydro-turbine governing system with complex penstocks in the grid-connected mode. Firstly, a novel fractional-order nonlinear mathematical model of a Francis hydro-...This paper investigates the stability of the Francis hydro-turbine governing system with complex penstocks in the grid-connected mode. Firstly, a novel fractional-order nonlinear mathematical model of a Francis hydro-turbine governing system with complex penstocks is built from an engineering application perspective. This model is described by state-space equations and is composed of the Francis hydro-turbine model, the fractional-order complex penstocks model, the third-order generator model, and the hydraulic speed governing system model. Based on stability theory for a fractional-order nonlinear system, this study discovers a basic law of the bifurcation points of the above system with a change in the fractional-order a. Secondly, the stable region of the governing system is investigated in detail,and nonlinear dynamical behaviors of the system are identified and studied exhaustively via bifurcation diagrams, time waveforms, phase orbits, Poincare maps, power spectrums and spectrograms. Results of these numerical experiments provide a theoretical reference for further studies of the stability of hydropower stations.展开更多
文摘In this paper,two crossover hybrid variable-order derivatives of the cancer model are developed.Grünwald-Letnikov approximation is used to approximate the hybrid fractional and variable-order fractional operators.The existence,uniqueness,and stability of the proposed model are discussed.Adams Bashfourth’s fifth-step method with a hybrid variable-order fractional operator is developed to study the proposed models.Comparative studies with generalized fifth-order Runge-Kutta method are given.Numerical examples and comparative studies to verify the applicability of the used methods and to demonstrate the simplicity of these approximations are presented.We have showcased the efficiency of the proposed method and garnered robust empirical support for our theoretical findings.
文摘The outbreak of COVID-19 in 2019 resulted in numerous infections and deaths. In order to better study the transmission of COVID-19, this article adopts an improved fractional-order SIR model. Firstly, the properties of the model are studied, including the feasible domain and bounded solutions of the system. Secondly, the stability of the system is discussed, among other things. Then, the GMMP method is introduced to obtain numerical solutions for the COVID-19 system and combined with the improved MH-NMSS-PSO parameter estimation method to fit the real data of Delhi, India from April 1, 2020 to June 30, 2020. The results show that the fitting effect is quite ideal. Finally, long-term predictions were made on the number of infections. We accurately estimate that the peak number of infections in Delhi, India, can reach around 2.1 million. This paper also compares the fitting performance of the integer-order COVID-19 model and the fractional-order COVID-19 model using the real data from Delhi. The results indicate that the fractional-order model with different orders, as we proposed, performs the best.
文摘This paper investigates an improved SIR model for COVID-19 based on the Caputo fractional derivative. Firstly, the properties of the model are studied, including the feasible domain and bounded solutions of the system. Secondly, the stability of the system is discussed, among other things. Then, the GMMP method is introduced to obtain numerical solutions for the COVID-19 system. Numerical simulations were conducted using MATLAB, and the results indicate that our model is valuable for studying virus transmission.
基金the financial support from the National Natural Science Foundation of China(No.52109119)the Guangxi Natural Science Foundation(No.2021GXNSFBA075030)+2 种基金the Guangxi Science and Technology Project(No.Guike AD20325002)the Chinese Postdoctoral Science Fund Project(No.2022 M723408)the Open Research Fund of State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin(China Institute of Water Resources and Hydropower Research)(No.IWHR-SKL-202202).
文摘Mechanical excavation,blasting,adjacent rockburst and fracture slip that occur during mining excavation impose dynamic loads on the rock mass,leading to further fracture of damaged surrounding rock in three-dimensional high-stress and even causing disasters.Therefore,a novel complex true triaxial static-dynamic combined loading method reflecting underground excavation damage and then frequent intermittent disturbance failure is proposed.True triaxial static compression and intermittent disturbance tests are carried out on monzogabbro.The effects of intermediate principal stress and amplitude on the strength characteristics,deformation characteristics,failure characteristics,and precursors of monzogabbro are analyzed,intermediate principal stress and amplitude increase monzogabbro strength and tensile fracture mechanism.Rapid increases in microseismic parameters during rock loading can be precursors for intermittent rock disturbance.Based on the experimental result,the new damage fractional elements and method with considering crack initiation stress and crack unstable stress as initiation and acceleration condition of intermittent disturbance irreversible deformation are proposed.A novel three-dimensional disturbance fractional deterioration model considering the intermediate principal stress effect and intermittent disturbance damage effect is established,and the model predicted results align well with the experimental results.The sensitivity of stress states and model parameters is further explored,and the intermittent disturbance behaviors at different f are predicted.This study provides valuable theoretical bases for the stability analysis of deep mining engineering under dynamic loads.
基金support from the National Science Foundation of China(22078190)the National Key R&D Plan of China(2020YFB1505802).
文摘Joint time–frequency analysis is an emerging method for interpreting the underlying physics in fuel cells,batteries,and supercapacitors.To increase the reliability of time–frequency analysis,a theoretical correlation between frequency-domain stationary analysis and time-domain transient analysis is urgently required.The present work formularizes a thorough model reduction of fractional impedance spectra for electrochemical energy devices involving not only the model reduction from fractional-order models to integer-order models and from high-to low-order RC circuits but also insight into the evolution of the characteristic time constants during the whole reduction process.The following work has been carried out:(i)the model-reduction theory is addressed for typical Warburg elements and RC circuits based on the continued fraction expansion theory and the response error minimization technique,respectively;(ii)the order effect on the model reduction of typical Warburg elements is quantitatively evaluated by time–frequency analysis;(iii)the results of time–frequency analysis are confirmed to be useful to determine the reduction order in terms of the kinetic information needed to be captured;and(iv)the results of time–frequency analysis are validated for the model reduction of fractional impedance spectra for lithium-ion batteries,supercapacitors,and solid oxide fuel cells.In turn,the numerical validation has demonstrated the powerful function of the joint time–frequency analysis.The thorough model reduction of fractional impedance spectra addressed in the present work not only clarifies the relationship between time-domain transient analysis and frequency-domain stationary analysis but also enhances the reliability of the joint time–frequency analysis for electrochemical energy devices.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.62071496,61901530,and 62061008)the Natural Science Foundation of Hunan Province of China(Grant No.2020JJ5767).
文摘In recent years,fractional-order chaotic maps have been paid more attention in publications because of the memory effect.This paper presents a novel variable-order fractional sine map(VFSM)based on the discrete fractional calculus.Specially,the order is defined as an iterative function that incorporates the current state of the system.By analyzing phase diagrams,time sequences,bifurcations,Lyapunov exponents and fuzzy entropy complexity,the dynamics of the proposed map are investigated comparing with the constant-order fractional sine map.The results reveal that the variable order has a good effect on improving the chaotic performance,and it enlarges the range of available parameter values as well as reduces non-chaotic windows.Multiple coexisting attractors also enrich the dynamics of VFSM and prove its sensitivity to initial values.Moreover,the sequence generated by the proposed map passes the statistical test for pseudorandom number and shows strong robustness to parameter estimation,which proves the potential applications in the field of information security.
文摘This article proposes a novel fractional heterogeneous neural network by coupling a Rulkov neuron with a Hopfield neural network(FRHNN),utilizing memristors for emulating neural synapses.The study firstly demonstrates the coexistence of multiple firing patterns through phase diagrams,Lyapunov exponents(LEs),and bifurcation diagrams.Secondly,the parameter related firing behaviors are described through two-parameter bifurcation diagrams.Subsequently,local attraction basins reveal multi-stability phenomena related to initial values.Moreover,the proposed model is implemented on a microcomputer-based ARM platform,and the experimental results correspond to the numerical simulations.Finally,the article explores the application of digital watermarking for medical images,illustrating its features of excellent imperceptibility,extensive key space,and robustness against attacks including noise and cropping.
文摘In this study,a numerical method based on the Pell-Lucas polynomials(PLPs)is developed to solve the fractional order HIV/AIDS epidemic model with a treatment compartment.The HIV/AIDS mathematical model with a treatment compartment is divided into five classes,namely,susceptible patients(S),HIV-positive individuals(I),individuals with full-blown AIDS but not receiving ARV treatment(A),individuals being treated(T),and individuals who have changed their sexual habits sufficiently(R).According to the method,by utilizing the PLPs and the collocation points,we convert the fractional order HIV/AIDS epidemic model with a treatment compartment into a nonlinear system of the algebraic equations.Also,the error analysis is presented for the Pell-Lucas approximation method.The aim of this study is to observe the behavior of five populations after 200 days when drug treatment is applied to HIV-infectious and full-blown AIDS people.To demonstrate the usefulness of this method,the applications are made on the numerical example with the help of MATLAB.In addition,four cases of the fractional order derivative(p=1,p=0.95,p=0.9,p=0.85)are examined in the range[0,200].Owing to applications,we figured out that the outcomes have quite decent errors.Also,we understand that the errors decrease when the value of N increases.The figures in this study are created in MATLAB.The outcomes indicate that the presented method is reasonably sufficient and correct.
文摘The numerical approach for finding the solution of fractional order systems of boundary value problems (BPVs) is derived in this paper. The implementation of the weighted residuals such as Galerkin, Least Square, and Collocation methods are included for solving fractional order differential equations, which is broadened to acquire the approximate solutions of fractional order systems with differentiable polynomials, namely Legendre polynomials, as basis functions. The algorithm of the residual formulations of matrix form can be coded efficiently. The interpretation of Caputo fractional derivatives is employed here. We have demonstrated these methods numerically through a few examples of linear and nonlinear BVPs. The results in absolute errors show that the present method efficiently finds the numerical solutions of fractional order systems of differential equations.
文摘In this paper, we consider the Cauchy problem of 3-dimensional tropical climate model. This model reflects the interaction and coupling among the barotropic mode u, the first baroclinic mode v of the velocity and the temperature θ. The systems with fractional dissipation studied here may arise in the modeling of geophysical circumstances. Mathematically these systems allow simultaneous examination of a family of systems with various levels of regularization. The aim here is the global strong solution with the least dissipation. By energy estimate and delicate analysis, we prove the existence of global solution under three different cases: first, with the help of damping terms, the global strong solution of the system with Λ<sup>2a</sup>u, Λ<sup>2β</sup>v and Λ<sup>2γ</sup> θ for;and second, the global strong solution of the system for with damping terms;finally, the global strong solution of the system for without any damping terms, which improve the known existence theory for this system.
文摘In this paper, we study the solutions for variable-order time-fractional diffusion equations. A three-point combined compact difference (CCD) method is used to discretize the spatial variables to achieve sixth-order accuracy, while the exponential-sum-approximation (ESA) is used to approximate the variable-order Caputo fractional derivative in the temporal direction, and a novel spatial sixth-order hybrid ESA-CCD method is implemented successfully. Finally, the accuracy of the proposed method is verified by numerical experiments.
基金supported by Princess Nourah bint Abdulrahman University Researchers Supporting Project No. (PNURSP2022R14),Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia。
文摘We propose a theoretical study investigating the spread of the novel coronavirus(COVID-19)reported inWuhan City of China in 2019.We develop a mathematical model based on the novel corona virus’s characteristics and then use fractional calculus to fractionalize it.Various fractional order epidemicmodels have been formulated and analyzed using a number of iterative and numerical approacheswhile the complications arise due to singular kernel.We use the well-known Caputo-Fabrizio operator for the purposes of fictionalization because this operator is based on the non-singular kernel.Moreover,to analyze the existence and uniqueness,we will use the well-known fixed point theory.We also prove that the considered model has positive and bounded solutions.We also draw some numerical simulations to verify the theoretical work via graphical representations.We believe that the proposed epidemic model will be helpful for health officials to take some positive steps to control contagious diseases.
基金funded by National Research Council of Thailand(NRCT)and Khon Kaen University:N42A650291.
文摘The motive of these investigations is to provide the importance and significance of the fractional order(FO)derivatives in the nonlinear environmental and economic(NEE)model,i.e.,FO-NEE model.The dynamics of the NEE model achieves more precise by using the form of the FO derivative.The investigations through the non-integer and nonlinear mathematical form to define the FO-NEE model are also provided in this study.The composition of the FO-NEEmodel is classified into three classes,execution cost of control,system competence of industrial elements and a new diagnostics technical exclusion cost.The mathematical FO-NEE system is numerically studied by using the artificial neural networks(ANNs)along with the Levenberg-Marquardt backpropagation method(ANNs-LMBM).Three different cases using the FO derivative have been examined to present the numerical performances of the FO-NEE model.The data is selected to solve the mathematical FO-NEE system is executed as 70%for training and 15%for both testing and certification.The exactness of the proposed ANNs-LMBM is observed through the comparison of the obtained and the Adams-Bashforth-Moulton database results.To ratify the aptitude,validity,constancy,exactness,and competence of the ANNs-LMBM,the numerical replications using the state transitions,regression,correlation,error histograms and mean square error are also described.
基金This project is supported by the Postgraduate Research&Practice Innovation Program of Jiangsu Province(SJCX22_0124)the National Natural Science Foundation of China(NO.61374153).
文摘Considering the fractional-order and nonlinear characteristics of proton exchange membrane fuel cells(PEMFC),a fractional-order subspace identification method based on the ADE-BH optimization algorithm is proposed to establish a fractional-order Hammerstein state-space model of PEMFCs.Herein,a Hammerstein model is constructed by connecting a linear module and a nonlinear module in series to precisely depict the nonlinear property of the PEMFC.During the modeling process,fractional-order theory is combined with subspace identification,and a Poisson filter is adopted to enable multi-order derivability of the data.A variable memory method is introduced to reduce computation time without losing precision.Additionally,to improve the optimization accuracy and avoid obtaining locally optimum solutions,a novel ADEBH algorithm is employed to optimize the unknown parameters in the identification method.In this algorithm,the Euclidean distance serves as the theoretical basis for updating the target vector in the absorption-generation operation of the black hole(BH)algorithm.Finally,simulations demonstrate that the proposed model has small output error and high accuracy,indicating that the model can accurately describe the electrical characteristics of the PEMFC process.
文摘The current investigations provide the solutions of the nonlinear fractional order mathematical rape and its controlmodel using the strength of artificial neural networks(ANNs)along with the Levenberg-Marquardt backpropagation approach(LMBA),i.e.,artificial neural networks-Levenberg-Marquardt backpropagation approach(ANNs-LMBA).The fractional order investigations have been presented to find more realistic results of the mathematical form of the rape and its control model.The differential mathematical form of the nonlinear fractional order mathematical rape and its control model has six classes:susceptible native girls,infected immature girls,susceptible knowledgeable girls,infected knowledgeable girls,susceptible rapist population and infective rapist population.The rape and its control differential system using three different fractional order values is authenticated to perform the correctness of ANNs-LMBA.The data is used to present the rape and its control differential system is designated as 70%for training,14%for authorization and 16%for testing.The obtained performances of the ANNs-LMBA are compared with the dataset of the Adams-Bashforth-Moulton scheme.To substantiate the consistency,aptitude,validity,exactness,and capability of the LMBA neural networks,the obtained numerical values are provided using the state transitions(STs),correlation,regression,mean square error(MSE)and error histograms(EHs).
基金Sponsored by the National Natural Sciences Foundation of China(Grant No.61201227)
文摘According to the fact that the actual inductor and actual capacitor are fractional, the mathematical and state-space averaging models of fractional order Buck converters in continuous conduction mode(CCM) are constructed by using fractional calculus theory. Firstly, the parameter conditions that ensure that the converter working in CCM is given and transfer functions are derived. Also, the inductor current and the output voltage are analyzed. Then the difference between the mathematical model and the circuit model are analyzed, and the effect of fractional order is studied by comparing the integer order with fractional order model. Finally, the dynamic behavior of the current-controlled Buck converter is investigated. Simulation experiments are achieved via the use of Matlab/Simulink. The experimental results verify the correctness of theoretical analysis, the order should be taken as a significant parameter. When the order is taken as a bifurcation parameter, the dynamic behavior of the converter will be affected and bifurcation points will be changed as order varies.
基金Project supported by the National Natural Science Foundation of China (Grant No. 51177117)the Specialized Research Fund for the Doctoral Program of Higher Education,China (Grant No. 20100201110023)
文摘In this paper, the fractional-order mathematical model and the fractional-order state-space averaging model of the Buck-Boost converter in continuous conduction mode (CCM) are established based on the fractional calculus and the Adomian decomposition method. Some dynamical properties of the current-mode controlled fractional-order Buck- Boost converter are analysed. The simulation is accomplished by using SIMULINK. Numerical simulations are presented to verify the analytical results and we find that bifurcation points will be moved backward as α and β vary. At the same time, the simulation results show that the converter goes through different routes to chaos.
基金supported by National Natural Science Foundation of China(61104085,51505213)Natural Science Foundation of Jiangsu Province(BK20151463,BK20130744)+2 种基金Innovation Foundation of NJIT(CKJA201409,CKJB201209)sponsored by Jiangsu Qing Lan ProjectJiangsu Government Scholarship for Overseas Studies(JS-2012-051)
基金the National Natural Science Foundation of China(Grant No.52077160).
文摘Recently,the memory elements-based circuits have been addressed frequently in the nonlinear circuit theory due to their unique behaviors.Thus,the modeling and characterizing of the mem-elements become essential.In this paper,the analysis of the multiple fractional-order voltage-controlled memcapacitors model in parallel connection is studied.Firstly,two fractional-order memcapacitors are connected in parallel,the equivalent model is derived,and the characteristic of the equivalent memcapacitor is analyzed in positive or negative connection.Then a new understanding manner according to different rate factor K and fractional orderαis derived to explain the equivalent modeling structure conveniently.Additionally,the negative order appears,which is a consequence of the combination of memcapacitors in different directions.Meanwhile,the equivalent parallel memcapacitance has been drawn to determine that multiple fractional-order memcapacitors could be calculated as one composite memcapacitor.Thus,an arbitrary fractional-order equivalent memcapacitor could be constructed by multiple fractional-order memcapacitors.
基金supported by the Scientific Research Foundation of the National Natural Science Foundation-Outstanding Youth Foundation(No.51622906)National Natural Science Foundation of China (No.51479173)+4 种基金Fundamental Research Funds for the Central Universities (201304030577)Scientific Research Funds of Northwest A&F University (2013BSJJ095)the Scientific Research Foundation for Water Engineering in Shaanxi Province (2013slkj-12)the Science Fund for Excellent Young Scholars from Northwest A&F University (Z109021515)the Shaanxi Nova Program (2016KJXX-55)
文摘This paper investigates the stability of the Francis hydro-turbine governing system with complex penstocks in the grid-connected mode. Firstly, a novel fractional-order nonlinear mathematical model of a Francis hydro-turbine governing system with complex penstocks is built from an engineering application perspective. This model is described by state-space equations and is composed of the Francis hydro-turbine model, the fractional-order complex penstocks model, the third-order generator model, and the hydraulic speed governing system model. Based on stability theory for a fractional-order nonlinear system, this study discovers a basic law of the bifurcation points of the above system with a change in the fractional-order a. Secondly, the stable region of the governing system is investigated in detail,and nonlinear dynamical behaviors of the system are identified and studied exhaustively via bifurcation diagrams, time waveforms, phase orbits, Poincare maps, power spectrums and spectrograms. Results of these numerical experiments provide a theoretical reference for further studies of the stability of hydropower stations.