An autonomous microgrid that runs on renewable energy sources is presented in this article.It has a supercon-ducting magnetic energy storage(SMES)device,wind energy-producing devices,and an energy storage battery.Howe...An autonomous microgrid that runs on renewable energy sources is presented in this article.It has a supercon-ducting magnetic energy storage(SMES)device,wind energy-producing devices,and an energy storage battery.However,because such microgrids are nonlinear and the energy they create varies with time,controlling and managing the energy inside them is a difficult issue.Fractional-order proportional integral(FOPI)controller is recommended for the current research to enhance a standalone microgrid’s energy management and performance.The suggested dedicated control for the SMES comprises two loops:the outer loop,which uses the FOPI to regulate the DC-link voltage,and the inner loop,responsible for regulating the SMES current,is constructed using the intelligent FOPI(iFOPI).The FOPI+iFOPI parameters are best developed using the dandelion optimizer(DO)approach to achieve the optimum performance.The suggested FOPI+iFOPI controller’s performance is contrasted with a conventional PI controller for variations in wind speed and microgrid load.The optimal FOPI+iFOPI controller manages the voltage and frequency of the load.The behavior of the microgrid as a reaction to step changes in load and wind speed was measured using the proposed controller.MATLAB simulations were used to evaluate the recommended system’s performance.The results of the simulations showed that throughout all interruptions,the recommended microgrid provided the load with AC power with a constant amplitude and frequency.In addition,the required load demand was accurately reduced.Furthermore,the microgrid functioned incredibly well despite SMES and varying wind speeds.Results obtained under identical conditions were compared with and without the best FOPI+iFOPI controller.When utilizing the optimal FOPI+iFOPI controller with SMES,it was found that the microgrid performed better than the microgrid without SMES.展开更多
This paper proposes an adaptive nonlinear proportional-derivative(ANPD)controller for a two-wheeled self-balancing robot(TWSB)modeled by the Lagrange equation with external forces.The proposed control scheme is design...This paper proposes an adaptive nonlinear proportional-derivative(ANPD)controller for a two-wheeled self-balancing robot(TWSB)modeled by the Lagrange equation with external forces.The proposed control scheme is designed based on the combination of a nonlinear proportional-derivative(NPD)controller and a genetic algorithm,in which the proportional-derivative(PD)parameters are updated online based on the tracking error and the preset error threshold.In addition,the genetic algorithm is employed to adaptively select initial controller parameters,contributing to system stability and improved control accuracy.The proposed controller is basic in design yet simple to implement.The ANPD controller has the advantage of being computationally lightweight and providing high robustness against external forces.The stability of the closed-loop system is rigorously analyzed and verified using Lyapunov theory,providing theoretical assurance of its robustness.Simulations and experimental results show that the TWSB robot with the proposed ANPD controller achieves quick balance and tracks target values with very small errors,demonstrating the effectiveness and performance of the proposed controller.The proposed ANPD controller demonstrates significant improvements in balancing and tracking performance for two-wheeled self-balancing robots,which has great applicability in the field of robot control systems.This represents a promising solution for applications requiring precise and stable motion control under varying external conditions.展开更多
A fractional-order delayed SEIR rumor spreading model with a nonlinear incidence function is established in this paper,and a novel strategy to control the bifurcation of this model is proposed.First,Hopf bifurcation i...A fractional-order delayed SEIR rumor spreading model with a nonlinear incidence function is established in this paper,and a novel strategy to control the bifurcation of this model is proposed.First,Hopf bifurcation is investigated by considering time delay as bifurcation parameter for the system without a feedback controller.Then,a state feedback controller is designed to control the occurrence of bifurcation in advance or to delay it by changing the parameters of the controller.Finally,in order to verify the theoretical results,some numerical simulations are given.展开更多
We investigate the quasi-synchronization of fractional-order complex networks(FCNs) with random coupling via quantized control. Firstly, based on the logarithmic quantizer theory and the Lyapunov stability theory, a n...We investigate the quasi-synchronization of fractional-order complex networks(FCNs) with random coupling via quantized control. Firstly, based on the logarithmic quantizer theory and the Lyapunov stability theory, a new quantized feedback controller, which can make all nodes of complex networks quasi-synchronization and eliminate the disturbance of random coupling in the system state, is designed under non-delay conditions. Secondly, we extend the theoretical results under non-delay conditions to time-varying delay conditions and design another form of quantization feedback controller to ensure that the network achieves quasi-synchronization. Furthermore, the error bound of quasi-synchronization is obtained.Finally, we verify the accuracy of our results using two numerical simulation examples.展开更多
The robust stability study of the classic Smith predictor-based control system for uncertain fractional-order plants with interval time delays and interval coefficients is the emphasis of this work.Interval uncertaint...The robust stability study of the classic Smith predictor-based control system for uncertain fractional-order plants with interval time delays and interval coefficients is the emphasis of this work.Interval uncertainties are a type of parametric uncertainties that cannot be avoided when modeling real-world plants.Also,in the considered Smith predictor control structure it is supposed that the controller is a fractional-order proportional integral derivative(FOPID)controller.To the best of the authors'knowledge,no method has been developed until now to analyze the robust stability of a Smith predictor based fractional-order control system in the presence of the simultaneous uncertainties in gain,time-constants,and time delay.The three primary contributions of this study are as follows:ⅰ)a set of necessary and sufficient conditions is constructed using a graphical method to examine the robust stability of a Smith predictor-based fractionalorder control system—the proposed method explicitly determines whether or not the FOPID controller can robustly stabilize the Smith predictor-based fractional-order control system;ⅱ)an auxiliary function as a robust stability testing function is presented to reduce the computational complexity of the robust stability analysis;andⅲ)two auxiliary functions are proposed to achieve the control requirements on the disturbance rejection and the noise reduction.Finally,four numerical examples and an experimental verification are presented in this study to demonstrate the efficacy and significance of the suggested technique.展开更多
Purpose–This study aims to propose an adaptive fractional-order sliding mode controller to solve the problem of train speed tracking control and position interval control under disturbance environment in moving block...Purpose–This study aims to propose an adaptive fractional-order sliding mode controller to solve the problem of train speed tracking control and position interval control under disturbance environment in moving block system,so as to improve the tracking efficiency and collision avoidance performance.Design/methodology/approach–The mathematical model of information interaction between trains is established based on algebraic graph theory,so that the train can obtain the state information of adjacent trains,and then realize the distributed cooperative control of each train.In the controller design,the sliding mode control and fractional calculus are combined to avoid the discontinuous switching phenomenon,so as to suppress the chattering of sliding mode control,and a parameter adaptive law is constructed to approximate the time-varying operating resistance coefficient.Findings–The simulation results show that compared with proportional integral derivative(PID)control and ordinary sliding mode control,the control accuracy of the proposed algorithm in terms of speed is,respectively,improved by 25%and 75%.The error frequency and fluctuation range of the proposed algorithm are reduced in the position error control,the error value tends to 0,and the operation trend tends to be consistent.Therefore,the control method can improve the control accuracy of the system and prove that it has strong immunity.Originality/value–The algorithm can reduce the influence of external interference in the actual operating environment,realize efficient and stable tracking of trains,and ensure the safety of train control.展开更多
This paper is concerned with fractional-order PI~λD~μcontrollers. The definitions and properties of fractional calculus are introduced. The mathematical descriptions of a fractional-order controller and fractional-o...This paper is concerned with fractional-order PI~λD~μcontrollers. The definitions and properties of fractional calculus are introduced. The mathematical descriptions of a fractional-order controller and fractional-order control systems are outlined. The effects on control systems of order variation for fractional-order PI~λD~μ controllers are investigated by qualitative analysis and simulation. The conclusions and simulation examples are given. The results show the fractional-order PI~λD~μ controller is not sensitive to variation of its order.展开更多
Two different sliding mode controllers for a fractional order unified chaotic system are presented. The controller for an integer-order unified chaotic system is substituted directly into the fractional-order counterp...Two different sliding mode controllers for a fractional order unified chaotic system are presented. The controller for an integer-order unified chaotic system is substituted directly into the fractional-order counterpart system, and the fractional-order system can be made asymptotically stable by this controller. By proving the existence of a sliding manifold containing fractional integral, the controller for a fractional-order system is obtained, which can stabilize it. A comparison between these different methods shows that the performance of a sliding mode controller with a fractional integral is more robust than the other for controlling a fractional order unified chaotic system.展开更多
In this paper we investigate the chaotic behaviors of the fractional-order permanent magnet synchronous motor(PMSM).The necessary condition for the existence of chaos in the fractional-order PMSM is deduced.And an a...In this paper we investigate the chaotic behaviors of the fractional-order permanent magnet synchronous motor(PMSM).The necessary condition for the existence of chaos in the fractional-order PMSM is deduced.And an adaptivefeedback controller is developed based on the stability theory for fractional systems.The presented control scheme,which contains only one single state variable,is simple and flexible,and it is suitable both for design and for implementation in practice.Simulation is carried out to verify that the obtained scheme is efficient and robust against external interference for controlling the fractional-order PMSM system.展开更多
This paper focuses on the synchronisation between fractional-order and integer-order chaotic systems. Based on Lyapunov stability theory and numerical differentiation, a nonlinear feedback controller is obtained to ac...This paper focuses on the synchronisation between fractional-order and integer-order chaotic systems. Based on Lyapunov stability theory and numerical differentiation, a nonlinear feedback controller is obtained to achieve the synchronisation between fractional-order and integer-order chaotic systems. Numerical simulation results are presented to illustrate the effectiveness of this method.展开更多
This paper concerns about the frequency domain stability criteria for fractional-order control systems. On the base of characteristics of the fractional-order equations solutions, we consider the Nyquist stability cri...This paper concerns about the frequency domain stability criteria for fractional-order control systems. On the base of characteristics of the fractional-order equations solutions, we consider the Nyquist stability criterion in a wider sense and obtain a more common means to analyze the stability of fractional-order systems conveniently. Finally, this paper illustrates the generalized stability criteria with an example to show the effect of the parameters variation on the fractional-order control systems.展开更多
This paper provides a novel method to synchronize uncertain fractional-order chaotic systems with external disturbance via fractional terminal sliding mode control. Based on Lyapunov stability theory, a new fractional...This paper provides a novel method to synchronize uncertain fractional-order chaotic systems with external disturbance via fractional terminal sliding mode control. Based on Lyapunov stability theory, a new fractional-order switching manifold is proposed, and in order to ensure the occurrence of sliding motion in finite time, a corresponding sliding mode control law is designed. The proposed control scheme is applied to synchronize the fractional-order Lorenz chaotic system and fractional-order Chen chaotic system with uncertainty and external disturbance parameters. The simulation results show the applicability and efficiency of the proposed scheme.展开更多
This paper presents a modified sliding mode control for fractional-order chaotic economical systems with parameter uncertainty and external disturbance. By constructing the suitable sliding mode surface with fractiona...This paper presents a modified sliding mode control for fractional-order chaotic economical systems with parameter uncertainty and external disturbance. By constructing the suitable sliding mode surface with fractional-order integral, the effective sliding mode controller is designed to realize the asymptotical stability of fractional-order chaotic economical systems. Comparing with the existing results, the main results in this paper are more practical and rigorous. Simulation results show the effectiveness and feasibility of the proposed sliding mode control method.展开更多
A no-chattering sliding mode control strategy for a class of fractional-order chaotic systems is proposed in this paper. First, the sliding mode control law is derived to stabilize the states of the commensurate fract...A no-chattering sliding mode control strategy for a class of fractional-order chaotic systems is proposed in this paper. First, the sliding mode control law is derived to stabilize the states of the commensurate fractional-order chaotic system and the non-commensurate fractional-order chaotic system, respectively. The designed control scheme guarantees the asymptotical stability of an uncertain fractional-order chaotic system. Simulation results are given for several fractional-order chaotic examples to illustrate the effectiveness of the proposed scheme.展开更多
Palladium(Pd)-based sulfides have triggered extensive interest due to their unique properties and potential applications in the fields of electronics and optoelectronics.However,the synthesis of large-scale uniform Pd...Palladium(Pd)-based sulfides have triggered extensive interest due to their unique properties and potential applications in the fields of electronics and optoelectronics.However,the synthesis of large-scale uniform PdS and PdS_(2)nanofilms(NFs)remains an enormous challenge.In this work,2-inch wafer-scale PdS and PdS_(2) NFs with excellent stability can be controllably prepared via chemical vapor deposition combined with electron beam evaporation technique.The thickness of the pre-deposited Pd film and the sulfurization temperature are critical for the precise synthesis of PdS and PdS_(2) NFs.A corresponding growth mechanism has been proposed based on our experimental results and Gibbs free energy calculations.The electrical transport properties of PdS and PdS_(2) NFs were explored by conductive atomic force microscopy.Our findings have achieved the controllable growth of PdS and PdS_(2) NFs,which may provide a pathway to facilitate PdS and PdS_(2) based applications for next-generation high performance optoelectronic devices.展开更多
To improve dynamic and static performances and robustness of the induction motor speed control system based on vector control,an improved fractional-order intelligent proportional integral(IPIλ)controller was applied...To improve dynamic and static performances and robustness of the induction motor speed control system based on vector control,an improved fractional-order intelligent proportional integral(IPIλ)controller was applied to the speed controller of the vector control system,which combined the intelligent fractional integral with the proportion according to the variation of deviation.Compared with proportional integral(PI)and fractional-order proportional integral(FOPI)controllers,the IPIλcontroller achieved better control performance.The stimulation results indicate that the IPIλcontroller can not only track the given speed quickly and accurately,but also have better anti-interference and robustness for load and parameters variations.展开更多
Ferroresonance is a complex nonlinear electrotechnical phenomenon, which can result in thermal and electrical stresses on the electric power system equipments due to the over voltages and over currents it generates. T...Ferroresonance is a complex nonlinear electrotechnical phenomenon, which can result in thermal and electrical stresses on the electric power system equipments due to the over voltages and over currents it generates. The prediction or determination of ferroresonance depends mainly on the accuracy of the model used. Fractional-order models are more accurate than the integer-order models. In this paper, a fractional-order ferroresonance model is proposed. The influence of the order on the dynamic behaviors of this fractional-order system under different parameters n and F is investigated. Compared with the integral-order ferroresonance system, small change of the order not only affects the dynamic behavior of the system, but also significantly affects the harmonic components of the system. Then the fractional-order ferroresonance system is implemented by nonlinear circuit emulator. Finally, a fractional-order adaptive sliding mode control (FASMC) method is used to eliminate the abnormal operation state of power system. Since the introduction of the fractional-order sliding mode surface and the adaptive factor, the robustness and disturbance rejection of the controlled system are en- hanced. Numerical simulation results demonstrate that the proposed FASMC controller works well for suppression of ferroresonance over voltage.展开更多
In this paper, the complex dynamical behavior of a fractional-order Lorenz-like system with two quadratic terms is investigated. The existence and uniqueness of solutions for this system are proved, and the stabilitie...In this paper, the complex dynamical behavior of a fractional-order Lorenz-like system with two quadratic terms is investigated. The existence and uniqueness of solutions for this system are proved, and the stabilities of the equilibrium points are analyzed as one of the system parameters changes. The pitchfork bifurcation is discussed for the first time, and the necessary conditions for the commensurate and incommensurate fractional-order systems to remain in chaos are derived. The largest Lyapunov exponents and phase portraits are given to check the existence of chaos. Finally, the sliding mode control law is provided to make the states of the Lorenz-like system asymptotically stable. Numerical simulation results show that the presented approach can effectively guide chaotic trajectories to the unstable equilibrium points.展开更多
This paper studies synchronization of all nodes in a fractional-order complex dynamic network. An adaptive control strategy for synchronizing a dynamic network is proposed. Based on the Lyapunov stability theory, this...This paper studies synchronization of all nodes in a fractional-order complex dynamic network. An adaptive control strategy for synchronizing a dynamic network is proposed. Based on the Lyapunov stability theory, this paper shows that tracking errors of all nodes in a fractional-order complex network converge to zero. This simple yet prac- tical scheme can be used in many networks such as small-world networks and scale-free networks. Unlike the existing methods which assume the coupling configuration among the nodes of the network with diffusivity, symmetry, balance, or irreducibility, in this case, these assumptions are unnecessary, and the proposed adaptive strategy is more feasible. Two examples are presented to illustrate effectiveness of the proposed method.展开更多
基金This research was funded by the Deputyship for Research and Innovation,Ministry of Education,Saudi Arabia,through the University of Tabuk,Grant Number S-1443-0123.
文摘An autonomous microgrid that runs on renewable energy sources is presented in this article.It has a supercon-ducting magnetic energy storage(SMES)device,wind energy-producing devices,and an energy storage battery.However,because such microgrids are nonlinear and the energy they create varies with time,controlling and managing the energy inside them is a difficult issue.Fractional-order proportional integral(FOPI)controller is recommended for the current research to enhance a standalone microgrid’s energy management and performance.The suggested dedicated control for the SMES comprises two loops:the outer loop,which uses the FOPI to regulate the DC-link voltage,and the inner loop,responsible for regulating the SMES current,is constructed using the intelligent FOPI(iFOPI).The FOPI+iFOPI parameters are best developed using the dandelion optimizer(DO)approach to achieve the optimum performance.The suggested FOPI+iFOPI controller’s performance is contrasted with a conventional PI controller for variations in wind speed and microgrid load.The optimal FOPI+iFOPI controller manages the voltage and frequency of the load.The behavior of the microgrid as a reaction to step changes in load and wind speed was measured using the proposed controller.MATLAB simulations were used to evaluate the recommended system’s performance.The results of the simulations showed that throughout all interruptions,the recommended microgrid provided the load with AC power with a constant amplitude and frequency.In addition,the required load demand was accurately reduced.Furthermore,the microgrid functioned incredibly well despite SMES and varying wind speeds.Results obtained under identical conditions were compared with and without the best FOPI+iFOPI controller.When utilizing the optimal FOPI+iFOPI controller with SMES,it was found that the microgrid performed better than the microgrid without SMES.
文摘This paper proposes an adaptive nonlinear proportional-derivative(ANPD)controller for a two-wheeled self-balancing robot(TWSB)modeled by the Lagrange equation with external forces.The proposed control scheme is designed based on the combination of a nonlinear proportional-derivative(NPD)controller and a genetic algorithm,in which the proportional-derivative(PD)parameters are updated online based on the tracking error and the preset error threshold.In addition,the genetic algorithm is employed to adaptively select initial controller parameters,contributing to system stability and improved control accuracy.The proposed controller is basic in design yet simple to implement.The ANPD controller has the advantage of being computationally lightweight and providing high robustness against external forces.The stability of the closed-loop system is rigorously analyzed and verified using Lyapunov theory,providing theoretical assurance of its robustness.Simulations and experimental results show that the TWSB robot with the proposed ANPD controller achieves quick balance and tracks target values with very small errors,demonstrating the effectiveness and performance of the proposed controller.The proposed ANPD controller demonstrates significant improvements in balancing and tracking performance for two-wheeled self-balancing robots,which has great applicability in the field of robot control systems.This represents a promising solution for applications requiring precise and stable motion control under varying external conditions.
基金supported by the National Natural Science Foundation of China (U1703262,62163035,61866036,62006196,61963033,62163035)the Tianshan Innovation Team Program (2020D14017)the Tianshan Xuesong Program (2018XS02).
文摘A fractional-order delayed SEIR rumor spreading model with a nonlinear incidence function is established in this paper,and a novel strategy to control the bifurcation of this model is proposed.First,Hopf bifurcation is investigated by considering time delay as bifurcation parameter for the system without a feedback controller.Then,a state feedback controller is designed to control the occurrence of bifurcation in advance or to delay it by changing the parameters of the controller.Finally,in order to verify the theoretical results,some numerical simulations are given.
基金supported by the Anhui Provincial Development and Reform Commission New Energy Vehicles and Intelligent Connected Automobile Industry Technology Innovation Project。
文摘We investigate the quasi-synchronization of fractional-order complex networks(FCNs) with random coupling via quantized control. Firstly, based on the logarithmic quantizer theory and the Lyapunov stability theory, a new quantized feedback controller, which can make all nodes of complex networks quasi-synchronization and eliminate the disturbance of random coupling in the system state, is designed under non-delay conditions. Secondly, we extend the theoretical results under non-delay conditions to time-varying delay conditions and design another form of quantization feedback controller to ensure that the network achieves quasi-synchronization. Furthermore, the error bound of quasi-synchronization is obtained.Finally, we verify the accuracy of our results using two numerical simulation examples.
基金supported by the Estonian Research Council(PRG658)。
文摘The robust stability study of the classic Smith predictor-based control system for uncertain fractional-order plants with interval time delays and interval coefficients is the emphasis of this work.Interval uncertainties are a type of parametric uncertainties that cannot be avoided when modeling real-world plants.Also,in the considered Smith predictor control structure it is supposed that the controller is a fractional-order proportional integral derivative(FOPID)controller.To the best of the authors'knowledge,no method has been developed until now to analyze the robust stability of a Smith predictor based fractional-order control system in the presence of the simultaneous uncertainties in gain,time-constants,and time delay.The three primary contributions of this study are as follows:ⅰ)a set of necessary and sufficient conditions is constructed using a graphical method to examine the robust stability of a Smith predictor-based fractionalorder control system—the proposed method explicitly determines whether or not the FOPID controller can robustly stabilize the Smith predictor-based fractional-order control system;ⅱ)an auxiliary function as a robust stability testing function is presented to reduce the computational complexity of the robust stability analysis;andⅲ)two auxiliary functions are proposed to achieve the control requirements on the disturbance rejection and the noise reduction.Finally,four numerical examples and an experimental verification are presented in this study to demonstrate the efficacy and significance of the suggested technique.
基金supported by the Natural Science Foundation of China under Grant 52162050R&D plan project for science and technology of China Railway(No.N2021G045).
文摘Purpose–This study aims to propose an adaptive fractional-order sliding mode controller to solve the problem of train speed tracking control and position interval control under disturbance environment in moving block system,so as to improve the tracking efficiency and collision avoidance performance.Design/methodology/approach–The mathematical model of information interaction between trains is established based on algebraic graph theory,so that the train can obtain the state information of adjacent trains,and then realize the distributed cooperative control of each train.In the controller design,the sliding mode control and fractional calculus are combined to avoid the discontinuous switching phenomenon,so as to suppress the chattering of sliding mode control,and a parameter adaptive law is constructed to approximate the time-varying operating resistance coefficient.Findings–The simulation results show that compared with proportional integral derivative(PID)control and ordinary sliding mode control,the control accuracy of the proposed algorithm in terms of speed is,respectively,improved by 25%and 75%.The error frequency and fluctuation range of the proposed algorithm are reduced in the position error control,the error value tends to 0,and the operation trend tends to be consistent.Therefore,the control method can improve the control accuracy of the system and prove that it has strong immunity.Originality/value–The algorithm can reduce the influence of external interference in the actual operating environment,realize efficient and stable tracking of trains,and ensure the safety of train control.
基金Sponsored by Shanghai Science and Technology Development Funds (Grant No.011607033).
文摘This paper is concerned with fractional-order PI~λD~μcontrollers. The definitions and properties of fractional calculus are introduced. The mathematical descriptions of a fractional-order controller and fractional-order control systems are outlined. The effects on control systems of order variation for fractional-order PI~λD~μ controllers are investigated by qualitative analysis and simulation. The conclusions and simulation examples are given. The results show the fractional-order PI~λD~μ controller is not sensitive to variation of its order.
基金supported by the National Natural Science Foundation of China (Grant No. 60702023)the Natural Science Foundation of Zhejiang Province, China (Grant No. R1110443)
文摘Two different sliding mode controllers for a fractional order unified chaotic system are presented. The controller for an integer-order unified chaotic system is substituted directly into the fractional-order counterpart system, and the fractional-order system can be made asymptotically stable by this controller. By proving the existence of a sliding manifold containing fractional integral, the controller for a fractional-order system is obtained, which can stabilize it. A comparison between these different methods shows that the performance of a sliding mode controller with a fractional integral is more robust than the other for controlling a fractional order unified chaotic system.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 61172023,60871025,and 10862001)the Natural Science Foundation of Guangdong Province,China (Grant Nos. S2011010001018 and 8151009001000060)the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20114420110003)
文摘In this paper we investigate the chaotic behaviors of the fractional-order permanent magnet synchronous motor(PMSM).The necessary condition for the existence of chaos in the fractional-order PMSM is deduced.And an adaptivefeedback controller is developed based on the stability theory for fractional systems.The presented control scheme,which contains only one single state variable,is simple and flexible,and it is suitable both for design and for implementation in practice.Simulation is carried out to verify that the obtained scheme is efficient and robust against external interference for controlling the fractional-order PMSM system.
文摘This paper focuses on the synchronisation between fractional-order and integer-order chaotic systems. Based on Lyapunov stability theory and numerical differentiation, a nonlinear feedback controller is obtained to achieve the synchronisation between fractional-order and integer-order chaotic systems. Numerical simulation results are presented to illustrate the effectiveness of this method.
基金Supported by the Natural Science Foundation of Chongqing City (No. CSTC2004BB2165) and Research Foundation of Chongqing University of Posts and Telecommunications (No. A2005-47)
文摘This paper concerns about the frequency domain stability criteria for fractional-order control systems. On the base of characteristics of the fractional-order equations solutions, we consider the Nyquist stability criterion in a wider sense and obtain a more common means to analyze the stability of fractional-order systems conveniently. Finally, this paper illustrates the generalized stability criteria with an example to show the effect of the parameters variation on the fractional-order control systems.
基金Project supported by the Fundamental Research Funds for the Central Universities of China (Grant No. 11MG49)
文摘This paper provides a novel method to synchronize uncertain fractional-order chaotic systems with external disturbance via fractional terminal sliding mode control. Based on Lyapunov stability theory, a new fractional-order switching manifold is proposed, and in order to ensure the occurrence of sliding motion in finite time, a corresponding sliding mode control law is designed. The proposed control scheme is applied to synchronize the fractional-order Lorenz chaotic system and fractional-order Chen chaotic system with uncertainty and external disturbance parameters. The simulation results show the applicability and efficiency of the proposed scheme.
基金supported by the National Natural Science Foundation of China(Grant Nos.51207173 and 51277192)
文摘This paper presents a modified sliding mode control for fractional-order chaotic economical systems with parameter uncertainty and external disturbance. By constructing the suitable sliding mode surface with fractional-order integral, the effective sliding mode controller is designed to realize the asymptotical stability of fractional-order chaotic economical systems. Comparing with the existing results, the main results in this paper are more practical and rigorous. Simulation results show the effectiveness and feasibility of the proposed sliding mode control method.
基金supported by the National Natural Science Foundation of China (Grant No. 51109180)the Personal Special Fund of Northwest Agriculture and Forestry University,China (Grant No. RCZX-2009-01)
文摘A no-chattering sliding mode control strategy for a class of fractional-order chaotic systems is proposed in this paper. First, the sliding mode control law is derived to stabilize the states of the commensurate fractional-order chaotic system and the non-commensurate fractional-order chaotic system, respectively. The designed control scheme guarantees the asymptotical stability of an uncertain fractional-order chaotic system. Simulation results are given for several fractional-order chaotic examples to illustrate the effectiveness of the proposed scheme.
基金supported by National Natural Science Foundation of China (No.11974301)Key Research and Development Program of Hunan Province (No.2022GK2007)+2 种基金Key Project from Department Education of Hunan Province (No.22A0123)Scientific Research Fund of Hunan Provincial Education Department (No.21B0136)National college students innovation and entrepreneurship training program (No.S202310530016)。
文摘Palladium(Pd)-based sulfides have triggered extensive interest due to their unique properties and potential applications in the fields of electronics and optoelectronics.However,the synthesis of large-scale uniform PdS and PdS_(2)nanofilms(NFs)remains an enormous challenge.In this work,2-inch wafer-scale PdS and PdS_(2) NFs with excellent stability can be controllably prepared via chemical vapor deposition combined with electron beam evaporation technique.The thickness of the pre-deposited Pd film and the sulfurization temperature are critical for the precise synthesis of PdS and PdS_(2) NFs.A corresponding growth mechanism has been proposed based on our experimental results and Gibbs free energy calculations.The electrical transport properties of PdS and PdS_(2) NFs were explored by conductive atomic force microscopy.Our findings have achieved the controllable growth of PdS and PdS_(2) NFs,which may provide a pathway to facilitate PdS and PdS_(2) based applications for next-generation high performance optoelectronic devices.
基金National Natural Science Foundation of China(No.61461023)Gansu Provincial Department of Education Project(No.2016B-036)
文摘To improve dynamic and static performances and robustness of the induction motor speed control system based on vector control,an improved fractional-order intelligent proportional integral(IPIλ)controller was applied to the speed controller of the vector control system,which combined the intelligent fractional integral with the proportion according to the variation of deviation.Compared with proportional integral(PI)and fractional-order proportional integral(FOPI)controllers,the IPIλcontroller achieved better control performance.The stimulation results indicate that the IPIλcontroller can not only track the given speed quickly and accurately,but also have better anti-interference and robustness for load and parameters variations.
基金supported by the National Natural Science Foundation of China(Grant No.51507134)the Science Fund from the Education Department of Shaanxi Province,China(Grant No.15JK1537)
文摘Ferroresonance is a complex nonlinear electrotechnical phenomenon, which can result in thermal and electrical stresses on the electric power system equipments due to the over voltages and over currents it generates. The prediction or determination of ferroresonance depends mainly on the accuracy of the model used. Fractional-order models are more accurate than the integer-order models. In this paper, a fractional-order ferroresonance model is proposed. The influence of the order on the dynamic behaviors of this fractional-order system under different parameters n and F is investigated. Compared with the integral-order ferroresonance system, small change of the order not only affects the dynamic behavior of the system, but also significantly affects the harmonic components of the system. Then the fractional-order ferroresonance system is implemented by nonlinear circuit emulator. Finally, a fractional-order adaptive sliding mode control (FASMC) method is used to eliminate the abnormal operation state of power system. Since the introduction of the fractional-order sliding mode surface and the adaptive factor, the robustness and disturbance rejection of the controlled system are en- hanced. Numerical simulation results demonstrate that the proposed FASMC controller works well for suppression of ferroresonance over voltage.
基金Projected supported by the National Natural Science Foundation of China (Grant No. 11202155)the Fundamental Research Funds for the Central Universities, China (Grant No. K50511700001)
文摘In this paper, the complex dynamical behavior of a fractional-order Lorenz-like system with two quadratic terms is investigated. The existence and uniqueness of solutions for this system are proved, and the stabilities of the equilibrium points are analyzed as one of the system parameters changes. The pitchfork bifurcation is discussed for the first time, and the necessary conditions for the commensurate and incommensurate fractional-order systems to remain in chaos are derived. The largest Lyapunov exponents and phase portraits are given to check the existence of chaos. Finally, the sliding mode control law is provided to make the states of the Lorenz-like system asymptotically stable. Numerical simulation results show that the presented approach can effectively guide chaotic trajectories to the unstable equilibrium points.
基金Project supported by the National Natural Science Foundation of China(Nos.11672231 and11672233)the Natural Science Foundation of Shaanxi Province(No.2016JM1010)+1 种基金the Fundamental Research Funds for the Central Universities(No.3102017AX008)the Seed Foundation of Innovation and Creation for Graduate Students at the Northwestern Polytechnical University of China(No.Z2017187)
文摘This paper studies synchronization of all nodes in a fractional-order complex dynamic network. An adaptive control strategy for synchronizing a dynamic network is proposed. Based on the Lyapunov stability theory, this paper shows that tracking errors of all nodes in a fractional-order complex network converge to zero. This simple yet prac- tical scheme can be used in many networks such as small-world networks and scale-free networks. Unlike the existing methods which assume the coupling configuration among the nodes of the network with diffusivity, symmetry, balance, or irreducibility, in this case, these assumptions are unnecessary, and the proposed adaptive strategy is more feasible. Two examples are presented to illustrate effectiveness of the proposed method.