期刊文献+
共找到688篇文章
< 1 2 35 >
每页显示 20 50 100
Intelligent Fractional-Order Controller for SMES Systems in Renewable Energy-Based Microgrid
1
作者 Aadel M.Alatwi Abualkasim Bakeer +3 位作者 Sherif A.Zaid Ibrahem E.Atawi Hani Albalawi Ahmed M.Kassem 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第8期1807-1830,共24页
An autonomous microgrid that runs on renewable energy sources is presented in this article.It has a supercon-ducting magnetic energy storage(SMES)device,wind energy-producing devices,and an energy storage battery.Howe... An autonomous microgrid that runs on renewable energy sources is presented in this article.It has a supercon-ducting magnetic energy storage(SMES)device,wind energy-producing devices,and an energy storage battery.However,because such microgrids are nonlinear and the energy they create varies with time,controlling and managing the energy inside them is a difficult issue.Fractional-order proportional integral(FOPI)controller is recommended for the current research to enhance a standalone microgrid’s energy management and performance.The suggested dedicated control for the SMES comprises two loops:the outer loop,which uses the FOPI to regulate the DC-link voltage,and the inner loop,responsible for regulating the SMES current,is constructed using the intelligent FOPI(iFOPI).The FOPI+iFOPI parameters are best developed using the dandelion optimizer(DO)approach to achieve the optimum performance.The suggested FOPI+iFOPI controller’s performance is contrasted with a conventional PI controller for variations in wind speed and microgrid load.The optimal FOPI+iFOPI controller manages the voltage and frequency of the load.The behavior of the microgrid as a reaction to step changes in load and wind speed was measured using the proposed controller.MATLAB simulations were used to evaluate the recommended system’s performance.The results of the simulations showed that throughout all interruptions,the recommended microgrid provided the load with AC power with a constant amplitude and frequency.In addition,the required load demand was accurately reduced.Furthermore,the microgrid functioned incredibly well despite SMES and varying wind speeds.Results obtained under identical conditions were compared with and without the best FOPI+iFOPI controller.When utilizing the optimal FOPI+iFOPI controller with SMES,it was found that the microgrid performed better than the microgrid without SMES. 展开更多
关键词 fractional-order proportional integral(FOPI) intelligent controller renewable energy resources superconducting magnetic energy storage OPTIMIZATION
下载PDF
Adaptive Nonlinear PD Controller of Two-Wheeled Self-Balancing Robot with External Force
2
作者 Van-Truong Nguyen Dai-Nhan Duong +3 位作者 Dinh-Hieu Phan Thanh-Lam Bui Xiem HoangVan Phan Xuan Tan 《Computers, Materials & Continua》 SCIE EI 2024年第11期2337-2356,共20页
This paper proposes an adaptive nonlinear proportional-derivative(ANPD)controller for a two-wheeled self-balancing robot(TWSB)modeled by the Lagrange equation with external forces.The proposed control scheme is design... This paper proposes an adaptive nonlinear proportional-derivative(ANPD)controller for a two-wheeled self-balancing robot(TWSB)modeled by the Lagrange equation with external forces.The proposed control scheme is designed based on the combination of a nonlinear proportional-derivative(NPD)controller and a genetic algorithm,in which the proportional-derivative(PD)parameters are updated online based on the tracking error and the preset error threshold.In addition,the genetic algorithm is employed to adaptively select initial controller parameters,contributing to system stability and improved control accuracy.The proposed controller is basic in design yet simple to implement.The ANPD controller has the advantage of being computationally lightweight and providing high robustness against external forces.The stability of the closed-loop system is rigorously analyzed and verified using Lyapunov theory,providing theoretical assurance of its robustness.Simulations and experimental results show that the TWSB robot with the proposed ANPD controller achieves quick balance and tracks target values with very small errors,demonstrating the effectiveness and performance of the proposed controller.The proposed ANPD controller demonstrates significant improvements in balancing and tracking performance for two-wheeled self-balancing robots,which has great applicability in the field of robot control systems.This represents a promising solution for applications requiring precise and stable motion control under varying external conditions. 展开更多
关键词 Two-wheeled self-balancing robot nonlinear pd control external force genetic algorithm
下载PDF
BIFURCATION CONTROL FOR A FRACTIONAL-ORDER DELAYED SEIR RUMOR SPREADING MODEL WITH INCOMMENSURATE ORDERS
3
作者 叶茂林 蒋海军 《Acta Mathematica Scientia》 SCIE CSCD 2023年第6期2662-2682,共21页
A fractional-order delayed SEIR rumor spreading model with a nonlinear incidence function is established in this paper,and a novel strategy to control the bifurcation of this model is proposed.First,Hopf bifurcation i... A fractional-order delayed SEIR rumor spreading model with a nonlinear incidence function is established in this paper,and a novel strategy to control the bifurcation of this model is proposed.First,Hopf bifurcation is investigated by considering time delay as bifurcation parameter for the system without a feedback controller.Then,a state feedback controller is designed to control the occurrence of bifurcation in advance or to delay it by changing the parameters of the controller.Finally,in order to verify the theoretical results,some numerical simulations are given. 展开更多
关键词 rumor spreading fractional-order time delay bifurcation control
下载PDF
Quasi-synchronization of fractional-order complex networks with random coupling via quantized control
4
作者 张红伟 程然 丁大为 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第11期355-363,共9页
We investigate the quasi-synchronization of fractional-order complex networks(FCNs) with random coupling via quantized control. Firstly, based on the logarithmic quantizer theory and the Lyapunov stability theory, a n... We investigate the quasi-synchronization of fractional-order complex networks(FCNs) with random coupling via quantized control. Firstly, based on the logarithmic quantizer theory and the Lyapunov stability theory, a new quantized feedback controller, which can make all nodes of complex networks quasi-synchronization and eliminate the disturbance of random coupling in the system state, is designed under non-delay conditions. Secondly, we extend the theoretical results under non-delay conditions to time-varying delay conditions and design another form of quantization feedback controller to ensure that the network achieves quasi-synchronization. Furthermore, the error bound of quasi-synchronization is obtained.Finally, we verify the accuracy of our results using two numerical simulation examples. 展开更多
关键词 complex network fractional-order random coupling time-varying delay QUASI-SYNCHRONIZATION quantized control
下载PDF
Robust Stability Analysis of Smith Predictor Based Interval Fractional-Order Control Systems:A Case Study in Level Control Process
5
作者 Majid Ghorbani Mahsan Tavakoli-Kakhki +1 位作者 Aleksei Tepljakov Eduard Petlenkov 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第3期762-780,共19页
The robust stability study of the classic Smith predictor-based control system for uncertain fractional-order plants with interval time delays and interval coefficients is the emphasis of this work.Interval uncertaint... The robust stability study of the classic Smith predictor-based control system for uncertain fractional-order plants with interval time delays and interval coefficients is the emphasis of this work.Interval uncertainties are a type of parametric uncertainties that cannot be avoided when modeling real-world plants.Also,in the considered Smith predictor control structure it is supposed that the controller is a fractional-order proportional integral derivative(FOPID)controller.To the best of the authors'knowledge,no method has been developed until now to analyze the robust stability of a Smith predictor based fractional-order control system in the presence of the simultaneous uncertainties in gain,time-constants,and time delay.The three primary contributions of this study are as follows:ⅰ)a set of necessary and sufficient conditions is constructed using a graphical method to examine the robust stability of a Smith predictor-based fractionalorder control system—the proposed method explicitly determines whether or not the FOPID controller can robustly stabilize the Smith predictor-based fractional-order control system;ⅱ)an auxiliary function as a robust stability testing function is presented to reduce the computational complexity of the robust stability analysis;andⅲ)two auxiliary functions are proposed to achieve the control requirements on the disturbance rejection and the noise reduction.Finally,four numerical examples and an experimental verification are presented in this study to demonstrate the efficacy and significance of the suggested technique. 展开更多
关键词 Interval uncertainty FOPID controller fractional-order systems robust stability analysis smith predictor
下载PDF
High-speed train cooperativecontrol based on fractional-ordersliding mode adaptive algorithm
6
作者 Junting Lin Mingjun Ni Huadian Liang 《Railway Sciences》 2023年第1期84-100,共17页
Purpose–This study aims to propose an adaptive fractional-order sliding mode controller to solve the problem of train speed tracking control and position interval control under disturbance environment in moving block... Purpose–This study aims to propose an adaptive fractional-order sliding mode controller to solve the problem of train speed tracking control and position interval control under disturbance environment in moving block system,so as to improve the tracking efficiency and collision avoidance performance.Design/methodology/approach–The mathematical model of information interaction between trains is established based on algebraic graph theory,so that the train can obtain the state information of adjacent trains,and then realize the distributed cooperative control of each train.In the controller design,the sliding mode control and fractional calculus are combined to avoid the discontinuous switching phenomenon,so as to suppress the chattering of sliding mode control,and a parameter adaptive law is constructed to approximate the time-varying operating resistance coefficient.Findings–The simulation results show that compared with proportional integral derivative(PID)control and ordinary sliding mode control,the control accuracy of the proposed algorithm in terms of speed is,respectively,improved by 25%and 75%.The error frequency and fluctuation range of the proposed algorithm are reduced in the position error control,the error value tends to 0,and the operation trend tends to be consistent.Therefore,the control method can improve the control accuracy of the system and prove that it has strong immunity.Originality/value–The algorithm can reduce the influence of external interference in the actual operating environment,realize efficient and stable tracking of trains,and ensure the safety of train control. 展开更多
关键词 High-speed trains Sliding mode control fractional-order differentiation Adaptive law Cooperative control
下载PDF
Analysis of the effect on control systems of order variation for fractional-orderPI~λD~μcontrollers 被引量:1
7
作者 曾庆山 曹广益 朱新坚 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2005年第3期336-341,共6页
This paper is concerned with fractional-order PI~λD~μcontrollers. The definitions and properties of fractional calculus are introduced. The mathematical descriptions of a fractional-order controller and fractional-o... This paper is concerned with fractional-order PI~λD~μcontrollers. The definitions and properties of fractional calculus are introduced. The mathematical descriptions of a fractional-order controller and fractional-order control systems are outlined. The effects on control systems of order variation for fractional-order PI~λD~μ controllers are investigated by qualitative analysis and simulation. The conclusions and simulation examples are given. The results show the fractional-order PI~λD~μ controller is not sensitive to variation of its order. 展开更多
关键词 fractional calculus fractional-order control systems fractional-order PI~λD~μ controller characteristic polynomial
下载PDF
Comparison between two different sliding mode controllers for a fractional-order unified chaotic system 被引量:1
8
作者 齐冬莲 王乔 杨捷 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第10期150-158,共9页
Two different sliding mode controllers for a fractional order unified chaotic system are presented. The controller for an integer-order unified chaotic system is substituted directly into the fractional-order counterp... Two different sliding mode controllers for a fractional order unified chaotic system are presented. The controller for an integer-order unified chaotic system is substituted directly into the fractional-order counterpart system, and the fractional-order system can be made asymptotically stable by this controller. By proving the existence of a sliding manifold containing fractional integral, the controller for a fractional-order system is obtained, which can stabilize it. A comparison between these different methods shows that the performance of a sliding mode controller with a fractional integral is more robust than the other for controlling a fractional order unified chaotic system. 展开更多
关键词 unified chaotic system fractional-order system sliding mode control
下载PDF
基于PD-滑模耦合算法的压电智能薄板颤振抑制
9
作者 宋清华 李振民 +1 位作者 杨欣宇 马海峰 《航空制造技术》 CSCD 北大核心 2024年第1期28-37,共10页
针对工件柔性主导的薄壁件铣削颤振问题,提出了一种基于PD–滑模耦合算法的压电智能薄板颤振抑制方法。首先设计了只需位移测量的主动控制算法,基于滑模控制理论处理系统参数不确定性和外部扰动,通过动态补偿器对未知切削状态进行在线... 针对工件柔性主导的薄壁件铣削颤振问题,提出了一种基于PD–滑模耦合算法的压电智能薄板颤振抑制方法。首先设计了只需位移测量的主动控制算法,基于滑模控制理论处理系统参数不确定性和外部扰动,通过动态补偿器对未知切削状态进行在线近似和补偿;为解决传感误差和系统时滞问题,在滑模控制器中进一步耦合了时空依变PD控制模型,借助ABAQUS仿真拟合控制参数时变函数;最后设计了一套薄壁件主动控制装置,试验结果显示采用主动控制可有效抑制薄壁件铣削颤振,验证了控制方法的可行性。 展开更多
关键词 pd控制 颤振 滑模控制 铣削 压电智能薄板 主动控制
下载PDF
Fractional-order permanent magnet synchronous motor and its adaptive chaotic control 被引量:9
10
作者 李春来 禹思敏 罗晓曙 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第10期168-173,共6页
In this paper we investigate the chaotic behaviors of the fractional-order permanent magnet synchronous motor(PMSM).The necessary condition for the existence of chaos in the fractional-order PMSM is deduced.And an a... In this paper we investigate the chaotic behaviors of the fractional-order permanent magnet synchronous motor(PMSM).The necessary condition for the existence of chaos in the fractional-order PMSM is deduced.And an adaptivefeedback controller is developed based on the stability theory for fractional systems.The presented control scheme,which contains only one single state variable,is simple and flexible,and it is suitable both for design and for implementation in practice.Simulation is carried out to verify that the obtained scheme is efficient and robust against external interference for controlling the fractional-order PMSM system. 展开更多
关键词 fractional-order permanent magnet synchronous motor adaptive chaotic control
下载PDF
Nonlinear feedback synchronisation control between fractional-order and integer-order chaotic systems 被引量:6
11
作者 贾立新 戴浩 惠萌 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第11期194-199,共6页
This paper focuses on the synchronisation between fractional-order and integer-order chaotic systems. Based on Lyapunov stability theory and numerical differentiation, a nonlinear feedback controller is obtained to ac... This paper focuses on the synchronisation between fractional-order and integer-order chaotic systems. Based on Lyapunov stability theory and numerical differentiation, a nonlinear feedback controller is obtained to achieve the synchronisation between fractional-order and integer-order chaotic systems. Numerical simulation results are presented to illustrate the effectiveness of this method. 展开更多
关键词 chaos synchronisation fractional-order chaotic system nonlinear feedback control numerical differentiation
下载PDF
Frequency domain stability criteria for fractional-order control systems 被引量:5
12
作者 汪纪锋 《Journal of Chongqing University》 CAS 2006年第1期30-35,共6页
This paper concerns about the frequency domain stability criteria for fractional-order control systems. On the base of characteristics of the fractional-order equations solutions, we consider the Nyquist stability cri... This paper concerns about the frequency domain stability criteria for fractional-order control systems. On the base of characteristics of the fractional-order equations solutions, we consider the Nyquist stability criterion in a wider sense and obtain a more common means to analyze the stability of fractional-order systems conveniently. Finally, this paper illustrates the generalized stability criteria with an example to show the effect of the parameters variation on the fractional-order control systems. 展开更多
关键词 fractional-order control system frequency analysis stability criterion
下载PDF
Synchronization of uncertain fractional-order chaotic systems with disturbance based on a fractional terminal sliding mode controller 被引量:3
13
作者 王东风 张金营 王晓燕 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第4期178-184,共7页
This paper provides a novel method to synchronize uncertain fractional-order chaotic systems with external disturbance via fractional terminal sliding mode control. Based on Lyapunov stability theory, a new fractional... This paper provides a novel method to synchronize uncertain fractional-order chaotic systems with external disturbance via fractional terminal sliding mode control. Based on Lyapunov stability theory, a new fractional-order switching manifold is proposed, and in order to ensure the occurrence of sliding motion in finite time, a corresponding sliding mode control law is designed. The proposed control scheme is applied to synchronize the fractional-order Lorenz chaotic system and fractional-order Chen chaotic system with uncertainty and external disturbance parameters. The simulation results show the applicability and efficiency of the proposed scheme. 展开更多
关键词 fractional-order chaotic system SYNCHRONIZATION terminal sliding mode control UNCERTAINTY DISTURBANCE
下载PDF
Robust sliding mode control for fractional-order chaotic economical system with parameter uncertainty and external disturbance 被引量:3
14
作者 周柯 王智慧 +2 位作者 高立克 孙跃 马铁东 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第3期101-106,共6页
This paper presents a modified sliding mode control for fractional-order chaotic economical systems with parameter uncertainty and external disturbance. By constructing the suitable sliding mode surface with fractiona... This paper presents a modified sliding mode control for fractional-order chaotic economical systems with parameter uncertainty and external disturbance. By constructing the suitable sliding mode surface with fractional-order integral, the effective sliding mode controller is designed to realize the asymptotical stability of fractional-order chaotic economical systems. Comparing with the existing results, the main results in this paper are more practical and rigorous. Simulation results show the effectiveness and feasibility of the proposed sliding mode control method. 展开更多
关键词 fractional-order chaotic systems economical system sliding mode control parameter uncertainty
下载PDF
No-chattering sliding mode control in a class of fractional-order chaotic systems 被引量:2
15
作者 陈帝伊 刘玉晓 +1 位作者 马孝义 张润凡 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第12期143-151,共9页
A no-chattering sliding mode control strategy for a class of fractional-order chaotic systems is proposed in this paper. First, the sliding mode control law is derived to stabilize the states of the commensurate fract... A no-chattering sliding mode control strategy for a class of fractional-order chaotic systems is proposed in this paper. First, the sliding mode control law is derived to stabilize the states of the commensurate fractional-order chaotic system and the non-commensurate fractional-order chaotic system, respectively. The designed control scheme guarantees the asymptotical stability of an uncertain fractional-order chaotic system. Simulation results are given for several fractional-order chaotic examples to illustrate the effectiveness of the proposed scheme. 展开更多
关键词 fractional-order system chaos control sliding mode uncertain chaotic systems
下载PDF
Controllable growth of wafer-scale PdS and PdS_(2) nanofilms via chemical vapor deposition combined with an electron beam evaporation technique
16
作者 Hui Gao Hongyi Zhou +6 位作者 Yulong Hao Guoliang Zhou Huan Zhou Fenglin Gao Jinbiao Xiao Pinghua Tang Guolin Hao 《Journal of Semiconductors》 EI CAS CSCD 2023年第12期64-71,共8页
Palladium(Pd)-based sulfides have triggered extensive interest due to their unique properties and potential applications in the fields of electronics and optoelectronics.However,the synthesis of large-scale uniform Pd... Palladium(Pd)-based sulfides have triggered extensive interest due to their unique properties and potential applications in the fields of electronics and optoelectronics.However,the synthesis of large-scale uniform PdS and PdS_(2)nanofilms(NFs)remains an enormous challenge.In this work,2-inch wafer-scale PdS and PdS_(2) NFs with excellent stability can be controllably prepared via chemical vapor deposition combined with electron beam evaporation technique.The thickness of the pre-deposited Pd film and the sulfurization temperature are critical for the precise synthesis of PdS and PdS_(2) NFs.A corresponding growth mechanism has been proposed based on our experimental results and Gibbs free energy calculations.The electrical transport properties of PdS and PdS_(2) NFs were explored by conductive atomic force microscopy.Our findings have achieved the controllable growth of PdS and PdS_(2) NFs,which may provide a pathway to facilitate PdS and PdS_(2) based applications for next-generation high performance optoelectronic devices. 展开更多
关键词 pdS pdS_(2) NANOFILMS controllable growth chemical vapor deposition electron beam evaporation
下载PDF
Vector control of induction motor based on fractional-order intelligent-integral speed controller 被引量:2
17
作者 MIAO Zhong-cui HAN Tian-liang +1 位作者 DANG Jian-wu JU Mei 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2018年第2期125-133,共9页
To improve dynamic and static performances and robustness of the induction motor speed control system based on vector control,an improved fractional-order intelligent proportional integral(IPIλ)controller was applied... To improve dynamic and static performances and robustness of the induction motor speed control system based on vector control,an improved fractional-order intelligent proportional integral(IPIλ)controller was applied to the speed controller of the vector control system,which combined the intelligent fractional integral with the proportion according to the variation of deviation.Compared with proportional integral(PI)and fractional-order proportional integral(FOPI)controllers,the IPIλcontroller achieved better control performance.The stimulation results indicate that the IPIλcontroller can not only track the given speed quickly and accurately,but also have better anti-interference and robustness for load and parameters variations. 展开更多
关键词 fractional-order intelligent-integral induction motor speed controller
下载PDF
Dynamic analysis and fractional-order adaptive sliding mode control for a novel fractional-order ferroresonance system 被引量:1
18
作者 杨宁宁 韩宇超 +2 位作者 吴朝俊 贾嵘 刘崇新 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第8期74-86,共13页
Ferroresonance is a complex nonlinear electrotechnical phenomenon, which can result in thermal and electrical stresses on the electric power system equipments due to the over voltages and over currents it generates. T... Ferroresonance is a complex nonlinear electrotechnical phenomenon, which can result in thermal and electrical stresses on the electric power system equipments due to the over voltages and over currents it generates. The prediction or determination of ferroresonance depends mainly on the accuracy of the model used. Fractional-order models are more accurate than the integer-order models. In this paper, a fractional-order ferroresonance model is proposed. The influence of the order on the dynamic behaviors of this fractional-order system under different parameters n and F is investigated. Compared with the integral-order ferroresonance system, small change of the order not only affects the dynamic behavior of the system, but also significantly affects the harmonic components of the system. Then the fractional-order ferroresonance system is implemented by nonlinear circuit emulator. Finally, a fractional-order adaptive sliding mode control (FASMC) method is used to eliminate the abnormal operation state of power system. Since the introduction of the fractional-order sliding mode surface and the adaptive factor, the robustness and disturbance rejection of the controlled system are en- hanced. Numerical simulation results demonstrate that the proposed FASMC controller works well for suppression of ferroresonance over voltage. 展开更多
关键词 fractional-order ferroresonance system fractional-order sliding mode control adaptive control nonlinear circuit emulator
下载PDF
Complex dynamical behavior and chaos control in fractional-order Lorenz-like systems 被引量:1
19
作者 李瑞红 陈为胜 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第4期154-160,共7页
In this paper, the complex dynamical behavior of a fractional-order Lorenz-like system with two quadratic terms is investigated. The existence and uniqueness of solutions for this system are proved, and the stabilitie... In this paper, the complex dynamical behavior of a fractional-order Lorenz-like system with two quadratic terms is investigated. The existence and uniqueness of solutions for this system are proved, and the stabilities of the equilibrium points are analyzed as one of the system parameters changes. The pitchfork bifurcation is discussed for the first time, and the necessary conditions for the commensurate and incommensurate fractional-order systems to remain in chaos are derived. The largest Lyapunov exponents and phase portraits are given to check the existence of chaos. Finally, the sliding mode control law is provided to make the states of the Lorenz-like system asymptotically stable. Numerical simulation results show that the presented approach can effectively guide chaotic trajectories to the unstable equilibrium points. 展开更多
关键词 fractional-order Lorenz-like system stability analysis pitchfork bifurcation chaos control
下载PDF
Synchronization in a fractional-order dynamic network with uncertain parameters using an adaptive control strategy 被引量:1
20
作者 Lin DU Yong YANG Youming LEI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2018年第3期353-364,共12页
This paper studies synchronization of all nodes in a fractional-order complex dynamic network. An adaptive control strategy for synchronizing a dynamic network is proposed. Based on the Lyapunov stability theory, this... This paper studies synchronization of all nodes in a fractional-order complex dynamic network. An adaptive control strategy for synchronizing a dynamic network is proposed. Based on the Lyapunov stability theory, this paper shows that tracking errors of all nodes in a fractional-order complex network converge to zero. This simple yet prac- tical scheme can be used in many networks such as small-world networks and scale-free networks. Unlike the existing methods which assume the coupling configuration among the nodes of the network with diffusivity, symmetry, balance, or irreducibility, in this case, these assumptions are unnecessary, and the proposed adaptive strategy is more feasible. Two examples are presented to illustrate effectiveness of the proposed method. 展开更多
关键词 fractional-order chaotic system SYNCHRONIZATION complex dynamic net-work adaptive control
下载PDF
上一页 1 2 35 下一页 到第
使用帮助 返回顶部