We investigate the quasi-synchronization of fractional-order complex networks(FCNs) with random coupling via quantized control. Firstly, based on the logarithmic quantizer theory and the Lyapunov stability theory, a n...We investigate the quasi-synchronization of fractional-order complex networks(FCNs) with random coupling via quantized control. Firstly, based on the logarithmic quantizer theory and the Lyapunov stability theory, a new quantized feedback controller, which can make all nodes of complex networks quasi-synchronization and eliminate the disturbance of random coupling in the system state, is designed under non-delay conditions. Secondly, we extend the theoretical results under non-delay conditions to time-varying delay conditions and design another form of quantization feedback controller to ensure that the network achieves quasi-synchronization. Furthermore, the error bound of quasi-synchronization is obtained.Finally, we verify the accuracy of our results using two numerical simulation examples.展开更多
In the case where the knowledge of goal states is not known, the controllers are constructed to stabilize unstable steady states for a coupled dynamos system. A delayed feedback control technique is used to suppress c...In the case where the knowledge of goal states is not known, the controllers are constructed to stabilize unstable steady states for a coupled dynamos system. A delayed feedback control technique is used to suppress chaos to unstable focuses and unstable periodic orbits. To overcome the topological limitation that the saddle-type steady state cannot be stabilized, an adaptive control based on LaSalle's invariance principle is used to control chaos to unstable equilibrium (i.e. saddle point, focus, node, etc.). The control technique does not require any computer analysis of the system dynamics, and it operates without needing to know any explicit knowledge of the desired steady-state position.展开更多
A fractional-order thermo-elastic model taking into account the small-scale effects of the thermo-elastic coupled behavior is developed to study the free vibration of a higher-order shear microplate.The nonlocal strai...A fractional-order thermo-elastic model taking into account the small-scale effects of the thermo-elastic coupled behavior is developed to study the free vibration of a higher-order shear microplate.The nonlocal strain gradient theory is modified with the introduction of the fractional-order derivatives and the nonlocal characteristic length.The Fourier heat conduction is replaced by the non-Fourier heat conduction with the introduction of the fractional order and the memory characteristic time.Numerical calculations are performed to analyze the effects of the nonlocal strain gradient parameters,the spatiotemporal fractional order,the nonlocal characteristic length,and the memory characteristic time on the natural frequencies,the vibration attenuation,and the phase shift between the temperature field and the displacement field.The numerical results show that the new thermo-elastic model with the spatiotemporal fractional order can provide more exquisite descriptions of the thermo-elastic behavior at a small scale.展开更多
This article aims to address the global exponential synchronization problem for fractional-order complex dynamical networks(FCDNs)with derivative couplings and impulse effects via designing an appropriate feedback con...This article aims to address the global exponential synchronization problem for fractional-order complex dynamical networks(FCDNs)with derivative couplings and impulse effects via designing an appropriate feedback control based on discrete time state observations.In contrast to the existing works on integer-order derivative couplings,fractional derivative couplings are introduced into FCDNs.First,a useful lemma with respect to the relationship between the discrete time observations term and a continuous term is developed.Second,by utilizing an inequality technique and auxiliary functions,the rigorous global exponential synchronization analysis is given and synchronization criterions are achieved in terms of linear matrix inequalities(LMIs).Finally,two examples are provided to illustrate the correctness of the obtained results.展开更多
Outer synchronization between two different fractional-order general complex dynamical networks is investigated in this paper. Based on the stability theory of the fractional-order system, the sufficient criteria for ...Outer synchronization between two different fractional-order general complex dynamical networks is investigated in this paper. Based on the stability theory of the fractional-order system, the sufficient criteria for outer synchronization are derived analytically by applying the nonlinear control and the bidirectional coupling methods. The proposed synchronization method is applicable to almost all kinds of coupled fractional-order general complex dynamical networks. Neither a symmetric nor irreducible coupling configuration matrix is required. In addition, no constraint is imposed on the inner-coupling matrix. Numerical examples are also provided to demonstrate the validity of the presented synchronization scheme. Numeric evidence shows that both the feedback strength k and the fractional order a can be chosen appropriately to adjust the synchronization effect effectively.展开更多
This paper investigates the synchronization problem of fractional-order complex networks with nonidentical nodes. The generalized projective synchronization criterion of fractional-order complex networks with order 0 ...This paper investigates the synchronization problem of fractional-order complex networks with nonidentical nodes. The generalized projective synchronization criterion of fractional-order complex networks with order 0 〈 q 〈 1 is obtained based on the stability theory of the fractional-order system. The control method which combines active control with pinning control is then suggested to obtain the controllers. Furthermore, the adaptive strategy is applied to tune the control gains and coupling strength. Corresponding numerical simulations are performed to verify and illustrate the theoretical results.展开更多
基金supported by the Anhui Provincial Development and Reform Commission New Energy Vehicles and Intelligent Connected Automobile Industry Technology Innovation Project。
文摘We investigate the quasi-synchronization of fractional-order complex networks(FCNs) with random coupling via quantized control. Firstly, based on the logarithmic quantizer theory and the Lyapunov stability theory, a new quantized feedback controller, which can make all nodes of complex networks quasi-synchronization and eliminate the disturbance of random coupling in the system state, is designed under non-delay conditions. Secondly, we extend the theoretical results under non-delay conditions to time-varying delay conditions and design another form of quantization feedback controller to ensure that the network achieves quasi-synchronization. Furthermore, the error bound of quasi-synchronization is obtained.Finally, we verify the accuracy of our results using two numerical simulation examples.
基金supported by the Doctoral Foundation of North China Electric Power University (Grant No. kH0433)the International Science and Technology Cooperation Program (Grant No. 2007DFA71250)
文摘In the case where the knowledge of goal states is not known, the controllers are constructed to stabilize unstable steady states for a coupled dynamos system. A delayed feedback control technique is used to suppress chaos to unstable focuses and unstable periodic orbits. To overcome the topological limitation that the saddle-type steady state cannot be stabilized, an adaptive control based on LaSalle's invariance principle is used to control chaos to unstable equilibrium (i.e. saddle point, focus, node, etc.). The control technique does not require any computer analysis of the system dynamics, and it operates without needing to know any explicit knowledge of the desired steady-state position.
基金the National Natural Science Foundation of China(Nos.12072022 and 11872105)the Fundamental Research Funds for the Central Universities(Nos.FRF-TW-2018-005 and FRF-BR-18-008B)。
文摘A fractional-order thermo-elastic model taking into account the small-scale effects of the thermo-elastic coupled behavior is developed to study the free vibration of a higher-order shear microplate.The nonlocal strain gradient theory is modified with the introduction of the fractional-order derivatives and the nonlocal characteristic length.The Fourier heat conduction is replaced by the non-Fourier heat conduction with the introduction of the fractional order and the memory characteristic time.Numerical calculations are performed to analyze the effects of the nonlocal strain gradient parameters,the spatiotemporal fractional order,the nonlocal characteristic length,and the memory characteristic time on the natural frequencies,the vibration attenuation,and the phase shift between the temperature field and the displacement field.The numerical results show that the new thermo-elastic model with the spatiotemporal fractional order can provide more exquisite descriptions of the thermo-elastic behavior at a small scale.
基金supported by Key Projectof Natural Science Foundation of China(61833005)the Natural Science Foundation of Hebei Province of China(A2018203288)。
文摘This article aims to address the global exponential synchronization problem for fractional-order complex dynamical networks(FCDNs)with derivative couplings and impulse effects via designing an appropriate feedback control based on discrete time state observations.In contrast to the existing works on integer-order derivative couplings,fractional derivative couplings are introduced into FCDNs.First,a useful lemma with respect to the relationship between the discrete time observations term and a continuous term is developed.Second,by utilizing an inequality technique and auxiliary functions,the rigorous global exponential synchronization analysis is given and synchronization criterions are achieved in terms of linear matrix inequalities(LMIs).Finally,two examples are provided to illustrate the correctness of the obtained results.
基金supported by the National Natural Science Foundation of China (Grant No. 60873133)the National High Technology Research and Development Program of China (Grant No. 2007AA01Z478)
文摘Outer synchronization between two different fractional-order general complex dynamical networks is investigated in this paper. Based on the stability theory of the fractional-order system, the sufficient criteria for outer synchronization are derived analytically by applying the nonlinear control and the bidirectional coupling methods. The proposed synchronization method is applicable to almost all kinds of coupled fractional-order general complex dynamical networks. Neither a symmetric nor irreducible coupling configuration matrix is required. In addition, no constraint is imposed on the inner-coupling matrix. Numerical examples are also provided to demonstrate the validity of the presented synchronization scheme. Numeric evidence shows that both the feedback strength k and the fractional order a can be chosen appropriately to adjust the synchronization effect effectively.
文摘This paper investigates the synchronization problem of fractional-order complex networks with nonidentical nodes. The generalized projective synchronization criterion of fractional-order complex networks with order 0 〈 q 〈 1 is obtained based on the stability theory of the fractional-order system. The control method which combines active control with pinning control is then suggested to obtain the controllers. Furthermore, the adaptive strategy is applied to tune the control gains and coupling strength. Corresponding numerical simulations are performed to verify and illustrate the theoretical results.