In this paper, an impulsive synchronisation scheme for a class of fractional-order hyperchaotic systems is proposed. The sufficient conditions of a class of integral-order hyperchaotic systems' impulsive synchronisat...In this paper, an impulsive synchronisation scheme for a class of fractional-order hyperchaotic systems is proposed. The sufficient conditions of a class of integral-order hyperchaotic systems' impulsive synchronisation are illustrated. Furthermore, we apply the sufficient conditions to a class of fractional-order hyperchaotic systems and well achieve impulsive synchronisation of these fractional-order hyperchaotic systems, thereby extending the applicable scope of impulsive synchronisation. Numerical simulations further demonstrate the feasibility and effectiveness of the proposed scheme.展开更多
A challenging topic in nonlinear dynamics concerns the study of fractional-order systems without equilibrium points.In particular, no paper has been published to date regarding the presence of hyperchaos in these syst...A challenging topic in nonlinear dynamics concerns the study of fractional-order systems without equilibrium points.In particular, no paper has been published to date regarding the presence of hyperchaos in these systems. This paper aims to bridge the gap by introducing a new example of fractional-order hyperchaotic system without equilibrium points. The conducted analysis shows that hyperchaos exists in the proposed system when its order is as low as 3.84. Moreover, an interesting application of hyperchaotic synchronization to the considered fractional-order system is provided.展开更多
This paper presents chaos synchronization between two different four-dimensional (4D) hyperchaotic Chen systems by nonlinear feedback control laws. A modified 4D hyperchaotic Chen system is obtained by changing the ...This paper presents chaos synchronization between two different four-dimensional (4D) hyperchaotic Chen systems by nonlinear feedback control laws. A modified 4D hyperchaotic Chen system is obtained by changing the nonlinear function of the 4D hyperchaotic Chen system, furthermore, an electronic circuit to realize two different 4D hyperchaotic Chen systems is designed. With nonlinear feedback control method, chaos synchronization between two different 4D hyperchaotic Chen systems is achieved. Based on the stability theory~ the functions of the nonlinear feedback control for synchronization of two different 4D hyperchaotic Chen systems is derived, the range of feedback gains is determined. Numerical simulations are shown to verify the theoretical results.展开更多
In this paper, we propose a robust fractional-order proportional-integral(FOPI) observer for the synchronization of nonlinear fractional-order chaotic systems. The convergence of the observer is proved, and sufficient...In this paper, we propose a robust fractional-order proportional-integral(FOPI) observer for the synchronization of nonlinear fractional-order chaotic systems. The convergence of the observer is proved, and sufficient conditions are derived in terms of linear matrix inequalities(LMIs) approach by using an indirect Lyapunov method. The proposed FOPI observer is robust against Lipschitz additive nonlinear uncertainty. It is also compared to the fractional-order proportional(FOP) observer and its performance is illustrated through simulations done on the fractional-order chaotic Lorenz system.展开更多
In this paper, the modified cascade synchronization scheme is proposed to investigate the synchronization in discrete-time hyperchaotic systems. By choosing a general kind of proportional scaling error functions and b...In this paper, the modified cascade synchronization scheme is proposed to investigate the synchronization in discrete-time hyperchaotic systems. By choosing a general kind of proportional scaling error functions and based on rigorous control theory, we take the discrete-time hyperchaotic system due to Wang and 3D generalized Henon map as two examples to achieve the modified cascade synchronization, respectively. Numerical simulations are used to verify the effectiveness of the proposed technique.展开更多
A controller is designed to realize the synchronization between chaotic systems with different orders. The structure of the controller, the error equations and the Lyapunov functions are determined based on stability ...A controller is designed to realize the synchronization between chaotic systems with different orders. The structure of the controller, the error equations and the Lyapunov functions are determined based on stability theory. Hyperchaotic Chen system and Rossler system are taken for example to demonstrate the method to be effective and feasible. Simulation results show that all the state wriables of Rossler system can be synchronized with those of hyperchaotic Chen system by using only one controller, and the error signals approach zero smoothly and quickly.展开更多
This paper presents chaos synchronization between two different chaotic systems by using a nonlinear controller, in which the nonlinear functions of the system are used as a nonlinear feedback term. The feedback contr...This paper presents chaos synchronization between two different chaotic systems by using a nonlinear controller, in which the nonlinear functions of the system are used as a nonlinear feedback term. The feedback controller is designed on the basis of stability theory, and the area of feedback gain is determined. The artificial simulation results show that this control method is commendably effective and feasible.展开更多
This paper presents a new four-dimensional(4 D) autonomous chaotic system which has first Lyapunov exponent of about 22 and is comparatively larger than many existing three-dimensional(3 D) and 4 D chaotic systems...This paper presents a new four-dimensional(4 D) autonomous chaotic system which has first Lyapunov exponent of about 22 and is comparatively larger than many existing three-dimensional(3 D) and 4 D chaotic systems.The proposed system exhibits hyperbolic curve and circular paraboloid types of equilibria.The system has all zero eigenvalues for a particular case of an equilibrium point.The system has various dynamical behaviors like hyperchaotic,chaotic,periodic,and quasi-periodic.The system also exhibits coexistence of attractors.Dynamical behavior of the new system is validated using circuit implementation.Further an interesting switching synchronization phenomenon is proposed for the new chaotic system.An adaptive global integral sliding mode control is designed for the switching synchronization of the proposed system.In the switching synchronization,the synchronization is shown for the switching chaotic,stable,periodic,and hybrid synchronization behaviors.Performance of the controller designed in the paper is compared with an existing controller.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos. 60573172 and 60973152)the Doctoral Program Foundation of the Institution of Higher Education of China (Grant No. 20070141014)the Natural Science Foundation of Liaoning Province,China (No. 20082165)
文摘In this paper, an impulsive synchronisation scheme for a class of fractional-order hyperchaotic systems is proposed. The sufficient conditions of a class of integral-order hyperchaotic systems' impulsive synchronisation are illustrated. Furthermore, we apply the sufficient conditions to a class of fractional-order hyperchaotic systems and well achieve impulsive synchronisation of these fractional-order hyperchaotic systems, thereby extending the applicable scope of impulsive synchronisation. Numerical simulations further demonstrate the feasibility and effectiveness of the proposed scheme.
文摘A challenging topic in nonlinear dynamics concerns the study of fractional-order systems without equilibrium points.In particular, no paper has been published to date regarding the presence of hyperchaos in these systems. This paper aims to bridge the gap by introducing a new example of fractional-order hyperchaotic system without equilibrium points. The conducted analysis shows that hyperchaos exists in the proposed system when its order is as low as 3.84. Moreover, an interesting application of hyperchaotic synchronization to the considered fractional-order system is provided.
基金Project supported by the National Natural Science Foundation of China (Grant No 90405011), the Natural Science Foundation of Jiangsu Province, China (Grant No 05KJD120083) and the Natural Science Foundation of Nanjing Institute of Technology, China (Grant No KXJ06047).
文摘This paper presents chaos synchronization between two different four-dimensional (4D) hyperchaotic Chen systems by nonlinear feedback control laws. A modified 4D hyperchaotic Chen system is obtained by changing the nonlinear function of the 4D hyperchaotic Chen system, furthermore, an electronic circuit to realize two different 4D hyperchaotic Chen systems is designed. With nonlinear feedback control method, chaos synchronization between two different 4D hyperchaotic Chen systems is achieved. Based on the stability theory~ the functions of the nonlinear feedback control for synchronization of two different 4D hyperchaotic Chen systems is derived, the range of feedback gains is determined. Numerical simulations are shown to verify the theoretical results.
基金supported by King Abdullah University of Science and Technology (KAUST),KSA
文摘In this paper, we propose a robust fractional-order proportional-integral(FOPI) observer for the synchronization of nonlinear fractional-order chaotic systems. The convergence of the observer is proved, and sufficient conditions are derived in terms of linear matrix inequalities(LMIs) approach by using an indirect Lyapunov method. The proposed FOPI observer is robust against Lipschitz additive nonlinear uncertainty. It is also compared to the fractional-order proportional(FOP) observer and its performance is illustrated through simulations done on the fractional-order chaotic Lorenz system.
基金National Natural Science Foundation of China under Grant No.10735030
文摘In this paper, the modified cascade synchronization scheme is proposed to investigate the synchronization in discrete-time hyperchaotic systems. By choosing a general kind of proportional scaling error functions and based on rigorous control theory, we take the discrete-time hyperchaotic system due to Wang and 3D generalized Henon map as two examples to achieve the modified cascade synchronization, respectively. Numerical simulations are used to verify the effectiveness of the proposed technique.
基金Project supported by the National Natural Science Foundation of China (Grant No 20373021) and Natural Science Foundation of Liaoning Province (Grant No 20052151).
文摘A controller is designed to realize the synchronization between chaotic systems with different orders. The structure of the controller, the error equations and the Lyapunov functions are determined based on stability theory. Hyperchaotic Chen system and Rossler system are taken for example to demonstrate the method to be effective and feasible. Simulation results show that all the state wriables of Rossler system can be synchronized with those of hyperchaotic Chen system by using only one controller, and the error signals approach zero smoothly and quickly.
基金Project Supported by the National Natural Science Foundation of China (Grant No 20373021) and Natural Science Foundation of Liaoning Province, China (Grant No 20052151).
文摘This paper presents chaos synchronization between two different chaotic systems by using a nonlinear controller, in which the nonlinear functions of the system are used as a nonlinear feedback term. The feedback controller is designed on the basis of stability theory, and the area of feedback gain is determined. The artificial simulation results show that this control method is commendably effective and feasible.
基金supported by the National Natural Science Foundation of China(Grant No.11772306)
文摘This paper presents a new four-dimensional(4 D) autonomous chaotic system which has first Lyapunov exponent of about 22 and is comparatively larger than many existing three-dimensional(3 D) and 4 D chaotic systems.The proposed system exhibits hyperbolic curve and circular paraboloid types of equilibria.The system has all zero eigenvalues for a particular case of an equilibrium point.The system has various dynamical behaviors like hyperchaotic,chaotic,periodic,and quasi-periodic.The system also exhibits coexistence of attractors.Dynamical behavior of the new system is validated using circuit implementation.Further an interesting switching synchronization phenomenon is proposed for the new chaotic system.An adaptive global integral sliding mode control is designed for the switching synchronization of the proposed system.In the switching synchronization,the synchronization is shown for the switching chaotic,stable,periodic,and hybrid synchronization behaviors.Performance of the controller designed in the paper is compared with an existing controller.
基金国家自然科学基金(the National Natural Science Foundation of China under Grant No.60375001)福建省自然科学基金(the Natural Science Foundation of Fujian Province of China under Grant No.2006J0017)+2 种基金湖南省教育厅青年基金资助课题(No.05B016)湖南省教 育厅资助项目(No.B30534)福建省青年科技人才创新项目(No.2005J048)。