In this study, austenitic stainless steel(ASS) was additively fabricated by an arc-based direct energy deposition(DED) technique. Macrostructure, microstructure, mechanical characteristics at different spatial orienta...In this study, austenitic stainless steel(ASS) was additively fabricated by an arc-based direct energy deposition(DED) technique. Macrostructure, microstructure, mechanical characteristics at different spatial orientations(0°, 90°, and 45°), and wear characteristics were evaluated at the deposited structure top, middle, and bottom regions. Results show that austenite(γ) and delta-ferrite(δ) phases make up most of the microstructure of additively fabricated SS316LSi steel. Within γ matrix, δ phase is dispersed both(within and along) grain boundaries, exhibiting a fine vermicular morphology. The bottom, middle,and top regions of WAAM deposited ASS exhibit similar values to those of wrought SS316L in the tensile and impact test findings. Notably, a drop in hardness values is observed as build height increases. During SEM examinations of fractured surfaces from tensile specimen, closed dimples were observed, indicating good ductility of as-built structure. Wear test findings show signs of mild oxidation and usual adhesive wear. By depositing a mechanically mixed composite layer, an increase in the oxidation percentage was discovered to facilitate healing of worn surfaces. The findings of this study will help in design, production and renovation of products/components that are prone to wear. WAAM-deposited ASS has remarkable strength and ability to withstand impacts;it can be used in the production of armour plates for defence applications, mainly military vehicles and aircraft.展开更多
The strain-controlled cyclic deformation behaviour of Mg-9Gd-4Y-2Zn-0.5Zr with different structures was investigated. Alloys were prepared by solution, extrusion and pre-ageing extrusion, and the microstructures befor...The strain-controlled cyclic deformation behaviour of Mg-9Gd-4Y-2Zn-0.5Zr with different structures was investigated. Alloys were prepared by solution, extrusion and pre-ageing extrusion, and the microstructures before and after the fatigue tests were characterized.Experimental results indicated that the bimodal structure owned the better performance in fatigue test, which was attributed to the higher yield strength. For the equiaxed structure, cyclic hardening induced stress concentration until the failure. Stable cyclic deformation and persistent cyclic softening played an important role at the low and high strain amplitudes, respectively. This was attributed to the formation of fine grains relieving the stress concentration during cyclic loading. In addition, residual twins were observed in equiaxed structure to induce crack, and the bimodal structure effectively restrain it.展开更多
A comprehensive understanding of the failure behavior and mechanism of coal is a prerequisite for dealing with dynamic problems in mining space.In this study,the failure behavior and mechanism of coal under uniaxial d...A comprehensive understanding of the failure behavior and mechanism of coal is a prerequisite for dealing with dynamic problems in mining space.In this study,the failure behavior and mechanism of coal under uniaxial dynamic compressive loads were experimentally and numerically investigated.The experiments were conducted using a split Hopkinson pressure bar(SHPB)system.The results indicated that the typical failure of coal is lateral and axial at lower loading rates and totally smashed at higher loading rates.The further fractography analysis of lateral and axial fracture fragments indicated that the coal failure under dynamic compressive load is caused by tensile brittle fracture.In addition,the typical failure modes of coal under dynamic load were numerically reproduced.The numerical results indicated that the axial fracture is caused directly by the incident compressive stress wave and the lateral fracture is caused by the tensile stress wave reflected from the interface between coal specimen and transmitted bar.Potential application was further conducted to interpret dynamic problems in underground coal mine and it manifested that the lateral and axial fractures of coal constitute the parallel cracks in the coal mass under roof fall and blasting in mining space.展开更多
In the present study, an Al/Cu/Mg multi-layered composite was produced by accumulative roll bonding(ARB) through seven passes, and its microstructure and mechanical properties were evaluated. The microstructure invest...In the present study, an Al/Cu/Mg multi-layered composite was produced by accumulative roll bonding(ARB) through seven passes, and its microstructure and mechanical properties were evaluated. The microstructure investigations show that plastic instability occurred in both the copper and magnesium reinforcements in the primary sandwich. In addition, a composite with a perfectly uniform distribution of copper and magnesium reinforcing layers was produced during the last pass. By increasing the number of ARB cycles, the microhardness of the layers including aluminum, copper, and magnesium was significantly increased. The ultimate tensile strength of the sandwich was enhanced continually and reached a maximum value of 355.5 MPa. This strength value was about 3.2, 2, and 2.1 times higher than the initial strength values for the aluminum, copper, and magnesium sheets, respectively. Investigation of tensile fracture surfaces during the ARB process indicated that the fracture mechanism changed to shear ductile at the seventh pass.展开更多
Magnesium alloy(AZ91D)composites reinforced with silicon carbide particle with different volume percentage were fabricated by two step stir casting process.The effect of changes in particle size and volume fraction of...Magnesium alloy(AZ91D)composites reinforced with silicon carbide particle with different volume percentage were fabricated by two step stir casting process.The effect of changes in particle size and volume fraction of SiC particles on physical and mechanical properties of composites were evaluated under as cast and heat treated(T6)conditions.The experimental results were compared with the standard theoretical models.The results reveal that the mechanical properties of composites increased with increasing SiC particles and decrease with increasing particle size.Distribution of particles and fractured surface were studied through SEM and the presence of elements is revealed by EDS study.展开更多
The fatigue strength of a high V alloyed powder metallurgy tool steel with two different inclusion size levels, tempered at different temperatures, was investigated by a series of high cycle fatigue tests. It was show...The fatigue strength of a high V alloyed powder metallurgy tool steel with two different inclusion size levels, tempered at different temperatures, was investigated by a series of high cycle fatigue tests. It was shown that brittle inclusions with large sizes above 30μm prompted the occurrence of subsurface crack initiation and the reduction in fatigue strength. The fracture toughness and the stress amplitude both exerted a significant influence on the fish-eye size. A larger fish-eye area would form in the sample with a higher fracture toughness subjected to a lower stress amplitude. The stress intensity factor of the inclusion was found to lie above a typical value of the threshold stress intensity factor of 4 MPa.m^1/2. The fracture toughness of the sample with a hardness above HRC 56 could be estimated by the mean value of the stress intensity factor of the fish-eye. According to fractographic evaluation, the critical inclusion size can be calculated by linear fracture mechanics.展开更多
The influence of different welding speeds and rotary speeds on the formation and mechanical properties of friction stirweld joints of armor grade aluminum alloy was presented.The developed weld joints were characteriz...The influence of different welding speeds and rotary speeds on the formation and mechanical properties of friction stirweld joints of armor grade aluminum alloy was presented.The developed weld joints were characterized by bend tests,micro-hardness tests,tensile tests,optical and scanning electron microscopies.Mechanical properties(i.e.,micro-hardness,ultimatetensile strength and elongation to fracture)increased with the increase in rotary speed or decrease in welding speed.The effect ofwelding speed on micro-hardness of heat affected zones was more profound than the rotary speeds.The welding speeds and rotaryspeeds influenced the mechanical properties and their effects on various mechanical properties of the friction stir welded joints canbe predicted with the help of regression models.展开更多
An AZ31 HP magnesium alloy was laser beam welded in autogenous mode with AZ61 filler using Nd-YAG laser system.Microstructural examination revealed that the laser beam weld metals obtained with or without filler mater...An AZ31 HP magnesium alloy was laser beam welded in autogenous mode with AZ61 filler using Nd-YAG laser system.Microstructural examination revealed that the laser beam weld metals obtained with or without filler material had an average grain size of about 12 μm.The microhardness and the tensile strength of the weldments were similar to those of the parent alloy.However,the stress corrosion cracking (SCC) behaviour of both the weldments assessed by slow strain rate tensile (SSRT) tests in ASTM D1384 solution was found to be slightly inferior to that of the parent alloy.It was observed that the stress corrosion cracks originated in the weld metal and propagated through the weld metal-HAZ regions in the autogenous weldment.On the other hand,in the weldment obtained with AZ61 filler material,the crack initiation and propagation was in the HAZ region.The localized damage of the magnesium hydroxide/oxide film formed on the surface of the specimens due to the exposure to the corrosive environment during the SSRT tests was found to be responsible for the SCC.展开更多
Thermomechanical treatments were carried out to improve the properties of AZ31B joints prepared by gas tungsten arc welding. The microstructures of the joints were studied by optical microscopy and scanning electron m...Thermomechanical treatments were carried out to improve the properties of AZ31B joints prepared by gas tungsten arc welding. The microstructures of the joints were studied by optical microscopy and scanning electron microscopy with energy-dispersive spectrometry. Tensile tests and hardness tests were performed to investigate the effects of thermomechanical treatments on the mechanical properties of the joints. It is found that the thermomechanical-treated joints show superior mechanical properties against the as-welded joints, and their ultimate tensile strength can reach more than 92% of the base material. This mainly attributes to the formation of fine equiaxed grains in the fusion zone. ARer thermomechanical treatments the dendrites are transformed to fine spherical grains, and the dendritic segregation can be effectively eliminated.展开更多
High cyclic fatigue(HCF)behavior of an AA2139alloy belonging to Al-Cu-Mg-Ag system in T6and T840conditionswas examined.The T840treatment involving cold rolling with a40%reduction prior to peak ageing provides an incre...High cyclic fatigue(HCF)behavior of an AA2139alloy belonging to Al-Cu-Mg-Ag system in T6and T840conditionswas examined.The T840treatment involving cold rolling with a40%reduction prior to peak ageing provides an increase in tensilestrength compared with the T6condition.However,fatigue lifetime for two material conditions was nearly the same since there isweak effect of thermomechanical processing on micro-mechanisms of crack initiation and growth.展开更多
The effect of single overload on the fatigue crack growth in 2024-T3 and 7075-T6 Al alloys was analyzed.Fatigue tests under constantamplitude loading with overload peak were carried out on V-notched specimens.Fractogr...The effect of single overload on the fatigue crack growth in 2024-T3 and 7075-T6 Al alloys was analyzed.Fatigue tests under constantamplitude loading with overload peak were carried out on V-notched specimens.Fractographic analysis was used as a principal approach to explain the crack growth retardation due to the overload.Scanning electron microscopy(SEM)analyses were conducted on the fractured surface of failed specimens to study the retardation effect.The obtained results show that the overload application generates a plastic zone in both aluminum alloys.The generated plastic zone is three times larger in the case of 2024-T3 compared to 7075-T6,and thus,a significant crack retardation was induced for 2024-T3.The retardation effect due to the overload for 2024-T3 and 7075-T6 lasted for about 10 mm and 1 mm,respectively,from the point of overload application.展开更多
This study aimed at optimizing impact toughness and abrasion wear resistance of 15%Cr-2%Mo hypereutectic abrasion-resistant white irons. The effects of dynamic solidification, niobium addition, combined action of them...This study aimed at optimizing impact toughness and abrasion wear resistance of 15%Cr-2%Mo hypereutectic abrasion-resistant white irons. The effects of dynamic solidification, niobium addition, combined action of them and heat treatment have been investigated. Investigations were performed by means of the image analyzer, scanning electron microscopy (SEM), energy-dispersive spectrometry (EDS) and X-ray diffraction. Impact toughness and abrasion wear resistance tests were conducted. Fracture and worn surfaces were studied. Results indicated that microstructural control during solidifciation is the most valuable tool to attain the optimum combination between impact toughness and wear resistance in hypereutectic iron. Combined action of Nb addition and dynamic solidifciation improves impact toughness and wear resistance even more than the action of each individual factor. In the as-cast condition, impact toughness and abrasion resistance were increased after dynamic solidification compared to statically solidified one by 71.4% and 10%, respectively. This enhancement was increased to 114.3 % and 28.8 % by adding 2% Nb. Lower tempering temperature of 260°C exhibits better impact and abrasion resistance than the sub-critical tempering temperature of 500°C.展开更多
This study investigated the microstructure,physical,and mechanical properties of die-cast A308 alloy subjected to mechanical vibration during solidification.Different frequencies(0,20,30,40,and 50 Hz)at constant ampli...This study investigated the microstructure,physical,and mechanical properties of die-cast A308 alloy subjected to mechanical vibration during solidification.Different frequencies(0,20,30,40,and 50 Hz)at constant amplitude(31μm)were employed using a power amplifier as the power input device.X-ray diffraction,optical microscopy,and scanning electron microscopy were used to examine the morphological changes in the cast samples under stationary and vibratory conditions.Metallurgical features of the castings were evaluated using Image J software.The average values of metallurgical features,including primaryα-Al grain size,dendrite arm spacing,average area of eutectic silicon,aspect ratio,and percentage porosity,reduced by 34%,59%,56%,22%,and 62%,respectively,at 30 Hz frequency compared with stationary casting.Mechanical tests of the cast samples showed that the yield strength(YS),ultimate tensile strength(UTS),percentage elongation(%EL),and microhardness(HV)increased by 8%,13%,17%,and 16%,respectively,at 30 Hz frequency compared with stationary casting.The fractured surface of the tensile specimens exhibited mixed-mode fracture behavior because of brittle facets,cleavage facets,ductile tearing,and dimple morphologies.The presence of small dimples showed that plastic deformation occurred before fracture.展开更多
Based on the results of conventional triaxial compression tests and triaxial compression creep tests on Xiangjiaba sandstone,the failure modes in short-term tests and creep tests,fractography of sandstone after creep ...Based on the results of conventional triaxial compression tests and triaxial compression creep tests on Xiangjiaba sandstone,the failure modes in short-term tests and creep tests,fractography of sandstone after creep failure,short-term and creep failure criterion are analyzed.In the short-term tests and creep tests,the sandstone samples fail in a mix mode consisting of shear failure in a single main plane and tensile failure.Confining pressure can restrict brittle failure and enhance the ductility of sandstone.In the creep tests,brittle fracture is reduced and plastic deformation can fully be developed compared to the condition of short-term tests.And the shear fracture surfaces are flat and they are covered by small particles as a result of friction.When confining pressure increases,particle size decreases while the degree of friction on shear plane increases.On the tensile failure plane,the tensile trace and direction of tearing could be clearly observed.There are obvious tearing steps on the tensile failure plane and tearing laminated structure on the front edge of tearing fracture.The same criterion can be used for the short-term and creep behavior,and the fitting effect using the MOGI criterion is better than the DRUCKER PRAGER criterion.The cohesion and friction angle calculated by the MOGI criterion are in good accordance with those calculated by the MOHR COULOMB criterion.展开更多
The dynamic tensile behavior of twin-roll cast-rolled and hot-rolled AZ31B magnesium alloy was characterized over strainrates ranging from 0.001 to 375 s^-1 at room temperature using an elaborate dynamic tensile testi...The dynamic tensile behavior of twin-roll cast-rolled and hot-rolled AZ31B magnesium alloy was characterized over strainrates ranging from 0.001 to 375 s^-1 at room temperature using an elaborate dynamic tensile testing method, and the relationshipbetween its mechanical properties and microstructures. It is observed that the sheet has a strong initial basal fiber texture andmechanical twinning becomes prevalent to accommodate the high-rate deformation. The yield strength and ultimate tensile strengthmonotonically increase with increasing the strain rate, while the strain hardening exponent proportionally decreases with increasingthe strain rate due to twinning-induced softening. The total elongation at fracture distinctly decreases as the strain rate increasesunder quasi-static tension, while the effect of strain rate on the total elongation is not distinct under dynamic tension. Fractographicanalysis using a scanning electron microscope reveals that the fracture is a mixed mode of ductile and brittle fracture.展开更多
A novel process of fabricating aluminium matrix composites(AMCs)with requisite properties by dispersing rutile particles in the aluminum matrix was studied.A novel bi-stage stir casting method was employed to prepare ...A novel process of fabricating aluminium matrix composites(AMCs)with requisite properties by dispersing rutile particles in the aluminum matrix was studied.A novel bi-stage stir casting method was employed to prepare composites,by varying the mass fractions of the rutile particles as 1%,2%,3%and 4%in AA6061 matrix.The density,tensile strength,hardness and microstructures of composites were investigated.Bi-stage stir casting method engendered AMCs with uniform distribution of the reinforced rutile particles in the AA6061 matrix.This was confirmed by the enhancement of the properties of AMCs over the parent base material.Rutile-reinforced AMCs exhibited higher tensile strength and hardness as compared with unreinforced parent material.The properties of the composites were enhanced with the increase in the mass fraction of the rutile particles.However,beyond 3 wt.%of rutile particles,the tensile strength decreased.The hardness and tensile strength of the AMCs reinforced with 3 wt.%of rutile were improved by 36%and 14%respectively in comparison with those of matrix alone.展开更多
Both wear and crack due to heat checking in hot work tool steel are major failure modes.It is desirable to find amethod to lengthen the tool life while reducing manufacturing cost.This paper suggests a method to impro...Both wear and crack due to heat checking in hot work tool steel are major failure modes.It is desirable to find amethod to lengthen the tool life while reducing manufacturing cost.This paper suggests a method to improve toollife for hot work tool steel(SKD6)with crack by laser-melting process.The method has been evaluated using theimpact and fatigue test results.It is demonstrated that a repair of the crack by a laser-melting process is effectivefor life extension of the damaged tool.展开更多
Wear-resistant cladding plates consisting of a substrate(Q345 R) and a clad layer(BTW1) were bonded through hot rolling at the temperature of 1 200 ℃ and a rolling speed of 0.5 m/s. The microhardness of the cladd...Wear-resistant cladding plates consisting of a substrate(Q345 R) and a clad layer(BTW1) were bonded through hot rolling at the temperature of 1 200 ℃ and a rolling speed of 0.5 m/s. The microhardness of the cladding plate was also tested after being heat treated. The microstructure evolution on the interface of BTW1/Q345 R sheets under various reduction rates was investigated with a scanning electron microscope(SEM) and EBSD. It is found that the micro-cracks and oxide films on the interface disappear when the reduction is 80%, whereas the maximum uniform diffusion distance reaches 10 μm. As a result, a wide range of metallurgical bonding layers forms, which indicates an improved combination between the BTW1 and the Q345 R. Additionally, it is discovered that the unbroken oxide films on the interface are composed of Mn, Si or Cr at the reductions of 50% and 65%. The SEM fractography of tensile specimen demonstrates that the BTW1 has significant dimple characteristics and possesses lower-sized dimples with the increment in reduction, suggesting that the toughness and bonding strength of the cladding plates would be improved by the increase of reduction. The results reveal that a high rolling reduction causes the interfacial oxide film broken and further forms a higher-sized composite metallurgical bonding interface. The peak microhardness is achieved near the interface.展开更多
The present study designed two kinds of Fe-18Mn-1.3C-2Cr-(4,11)Al(wt.%)low-density steels.Tensile and impact tests were carried out to evaluate the work hardening and impact toughness properties via aluminum(Al)alloyi...The present study designed two kinds of Fe-18Mn-1.3C-2Cr-(4,11)Al(wt.%)low-density steels.Tensile and impact tests were carried out to evaluate the work hardening and impact toughness properties via aluminum(Al)alloying control.Meanwhile,microstructure evolution and fracture morphology were investigated by X-ray diffraction(XRD),a scanning electron microscope(SEM)equipped with electron backscatter diffraction(EBSD),a transmission electron microscope(TEM),and a stereo-optical microscope(OM).It is found that the Al addition obviously promotes the dislocation planar slipping,resulting in cleavage and brittle impact fracture in 11wt.%Al steel.Besides,the microband-induced plasticity(MBIP)mechanism is found in 4wt.%Al containing steel,introducing considerable work hardening capacity and impact toughness of 156.8±17.4 J.The present study provides a direct illustration of the relationship between work hardening and impact toughness behaviors of these two low-density steels for potential application as impact-resistant components.展开更多
基金Science&Engineering Research Board(SERB),DST,for its financial assistance received from the project(vide sanction order no.SPG/2021/003383)。
文摘In this study, austenitic stainless steel(ASS) was additively fabricated by an arc-based direct energy deposition(DED) technique. Macrostructure, microstructure, mechanical characteristics at different spatial orientations(0°, 90°, and 45°), and wear characteristics were evaluated at the deposited structure top, middle, and bottom regions. Results show that austenite(γ) and delta-ferrite(δ) phases make up most of the microstructure of additively fabricated SS316LSi steel. Within γ matrix, δ phase is dispersed both(within and along) grain boundaries, exhibiting a fine vermicular morphology. The bottom, middle,and top regions of WAAM deposited ASS exhibit similar values to those of wrought SS316L in the tensile and impact test findings. Notably, a drop in hardness values is observed as build height increases. During SEM examinations of fractured surfaces from tensile specimen, closed dimples were observed, indicating good ductility of as-built structure. Wear test findings show signs of mild oxidation and usual adhesive wear. By depositing a mechanically mixed composite layer, an increase in the oxidation percentage was discovered to facilitate healing of worn surfaces. The findings of this study will help in design, production and renovation of products/components that are prone to wear. WAAM-deposited ASS has remarkable strength and ability to withstand impacts;it can be used in the production of armour plates for defence applications, mainly military vehicles and aircraft.
基金the supports provided by the National Natural Science Foundation of China (Grant No.52075501)“XX supporting scientific research project”(xxxx2019-021)JCKY2018408B003,Magnesium alloy highperformance XXX multi-directional extrusion technology。
文摘The strain-controlled cyclic deformation behaviour of Mg-9Gd-4Y-2Zn-0.5Zr with different structures was investigated. Alloys were prepared by solution, extrusion and pre-ageing extrusion, and the microstructures before and after the fatigue tests were characterized.Experimental results indicated that the bimodal structure owned the better performance in fatigue test, which was attributed to the higher yield strength. For the equiaxed structure, cyclic hardening induced stress concentration until the failure. Stable cyclic deformation and persistent cyclic softening played an important role at the low and high strain amplitudes, respectively. This was attributed to the formation of fine grains relieving the stress concentration during cyclic loading. In addition, residual twins were observed in equiaxed structure to induce crack, and the bimodal structure effectively restrain it.
基金supports for this work,provided by the Natural Science Foundation of Anhui Province(No.1908085QE187,1808085ME161)the Open Research Program of Key Laboratory of Safety and High-efficiency Coal Mining(No.JYBSYS2019202)the Open Research Program of State Key Laboratory Cultivation Base for Gas Geology and Gas Control(No.WS2019B09)are gratefully acknowledged.
文摘A comprehensive understanding of the failure behavior and mechanism of coal is a prerequisite for dealing with dynamic problems in mining space.In this study,the failure behavior and mechanism of coal under uniaxial dynamic compressive loads were experimentally and numerically investigated.The experiments were conducted using a split Hopkinson pressure bar(SHPB)system.The results indicated that the typical failure of coal is lateral and axial at lower loading rates and totally smashed at higher loading rates.The further fractography analysis of lateral and axial fracture fragments indicated that the coal failure under dynamic compressive load is caused by tensile brittle fracture.In addition,the typical failure modes of coal under dynamic load were numerically reproduced.The numerical results indicated that the axial fracture is caused directly by the incident compressive stress wave and the lateral fracture is caused by the tensile stress wave reflected from the interface between coal specimen and transmitted bar.Potential application was further conducted to interpret dynamic problems in underground coal mine and it manifested that the lateral and axial fractures of coal constitute the parallel cracks in the coal mass under roof fall and blasting in mining space.
文摘In the present study, an Al/Cu/Mg multi-layered composite was produced by accumulative roll bonding(ARB) through seven passes, and its microstructure and mechanical properties were evaluated. The microstructure investigations show that plastic instability occurred in both the copper and magnesium reinforcements in the primary sandwich. In addition, a composite with a perfectly uniform distribution of copper and magnesium reinforcing layers was produced during the last pass. By increasing the number of ARB cycles, the microhardness of the layers including aluminum, copper, and magnesium was significantly increased. The ultimate tensile strength of the sandwich was enhanced continually and reached a maximum value of 355.5 MPa. This strength value was about 3.2, 2, and 2.1 times higher than the initial strength values for the aluminum, copper, and magnesium sheets, respectively. Investigation of tensile fracture surfaces during the ARB process indicated that the fracture mechanism changed to shear ductile at the seventh pass.
基金This work was supported by Department of Science and Technology,Government of India,under Grant No:RP02197.
文摘Magnesium alloy(AZ91D)composites reinforced with silicon carbide particle with different volume percentage were fabricated by two step stir casting process.The effect of changes in particle size and volume fraction of SiC particles on physical and mechanical properties of composites were evaluated under as cast and heat treated(T6)conditions.The experimental results were compared with the standard theoretical models.The results reveal that the mechanical properties of composites increased with increasing SiC particles and decrease with increasing particle size.Distribution of particles and fractured surface were studied through SEM and the presence of elements is revealed by EDS study.
基金financially supported by the National Key Technologies Research and Development Program of China (No. 2007BAE51B05)
文摘The fatigue strength of a high V alloyed powder metallurgy tool steel with two different inclusion size levels, tempered at different temperatures, was investigated by a series of high cycle fatigue tests. It was shown that brittle inclusions with large sizes above 30μm prompted the occurrence of subsurface crack initiation and the reduction in fatigue strength. The fracture toughness and the stress amplitude both exerted a significant influence on the fish-eye size. A larger fish-eye area would form in the sample with a higher fracture toughness subjected to a lower stress amplitude. The stress intensity factor of the inclusion was found to lie above a typical value of the threshold stress intensity factor of 4 MPa.m^1/2. The fracture toughness of the sample with a hardness above HRC 56 could be estimated by the mean value of the stress intensity factor of the fish-eye. According to fractographic evaluation, the critical inclusion size can be calculated by linear fracture mechanics.
基金DST Govt.of India for providing financial support through grant No.SR3/S3/MERC/005/2009 to carry out this work
文摘The influence of different welding speeds and rotary speeds on the formation and mechanical properties of friction stirweld joints of armor grade aluminum alloy was presented.The developed weld joints were characterized by bend tests,micro-hardness tests,tensile tests,optical and scanning electron microscopies.Mechanical properties(i.e.,micro-hardness,ultimatetensile strength and elongation to fracture)increased with the increase in rotary speed or decrease in welding speed.The effect ofwelding speed on micro-hardness of heat affected zones was more profound than the rotary speeds.The welding speeds and rotaryspeeds influenced the mechanical properties and their effects on various mechanical properties of the friction stir welded joints canbe predicted with the help of regression models.
文摘An AZ31 HP magnesium alloy was laser beam welded in autogenous mode with AZ61 filler using Nd-YAG laser system.Microstructural examination revealed that the laser beam weld metals obtained with or without filler material had an average grain size of about 12 μm.The microhardness and the tensile strength of the weldments were similar to those of the parent alloy.However,the stress corrosion cracking (SCC) behaviour of both the weldments assessed by slow strain rate tensile (SSRT) tests in ASTM D1384 solution was found to be slightly inferior to that of the parent alloy.It was observed that the stress corrosion cracks originated in the weld metal and propagated through the weld metal-HAZ regions in the autogenous weldment.On the other hand,in the weldment obtained with AZ61 filler material,the crack initiation and propagation was in the HAZ region.The localized damage of the magnesium hydroxide/oxide film formed on the surface of the specimens due to the exposure to the corrosive environment during the SSRT tests was found to be responsible for the SCC.
基金financially supported by the Natural Science Foundation of Jiangsu Province(No.BK2009354)
文摘Thermomechanical treatments were carried out to improve the properties of AZ31B joints prepared by gas tungsten arc welding. The microstructures of the joints were studied by optical microscopy and scanning electron microscopy with energy-dispersive spectrometry. Tensile tests and hardness tests were performed to investigate the effects of thermomechanical treatments on the mechanical properties of the joints. It is found that the thermomechanical-treated joints show superior mechanical properties against the as-welded joints, and their ultimate tensile strength can reach more than 92% of the base material. This mainly attributes to the formation of fine equiaxed grains in the fusion zone. ARer thermomechanical treatments the dendrites are transformed to fine spherical grains, and the dendritic segregation can be effectively eliminated.
基金a joint project between USATU (Ufa State Aviation Technical University) and UMPO (Ufa Engine Industrial Association), which is entitled “Elaboration and industrial development of high-precision shaping coordinated technologies and superficial hardening of responsible details from Al-alloys with heightened constructional energy efficiency”. This project was implemented under contract No. 40/10-30976/NCh-NCh01-13-KhGthe Ministry of Education and Science of the Russian Federation (contract No.02.G25.31.0010 between UMPO and the Ministry of Education and Science of the Russian Federation) via the Resolution of the Russian Federation Government No.218 from April 9,2010
文摘High cyclic fatigue(HCF)behavior of an AA2139alloy belonging to Al-Cu-Mg-Ag system in T6and T840conditionswas examined.The T840treatment involving cold rolling with a40%reduction prior to peak ageing provides an increase in tensilestrength compared with the T6condition.However,fatigue lifetime for two material conditions was nearly the same since there isweak effect of thermomechanical processing on micro-mechanisms of crack initiation and growth.
基金the Deanship of Scientific Research at King Saud University for funding the work through the research group (No. RGP-VPP-035)
文摘The effect of single overload on the fatigue crack growth in 2024-T3 and 7075-T6 Al alloys was analyzed.Fatigue tests under constantamplitude loading with overload peak were carried out on V-notched specimens.Fractographic analysis was used as a principal approach to explain the crack growth retardation due to the overload.Scanning electron microscopy(SEM)analyses were conducted on the fractured surface of failed specimens to study the retardation effect.The obtained results show that the overload application generates a plastic zone in both aluminum alloys.The generated plastic zone is three times larger in the case of 2024-T3 compared to 7075-T6,and thus,a significant crack retardation was induced for 2024-T3.The retardation effect due to the overload for 2024-T3 and 7075-T6 lasted for about 10 mm and 1 mm,respectively,from the point of overload application.
文摘This study aimed at optimizing impact toughness and abrasion wear resistance of 15%Cr-2%Mo hypereutectic abrasion-resistant white irons. The effects of dynamic solidification, niobium addition, combined action of them and heat treatment have been investigated. Investigations were performed by means of the image analyzer, scanning electron microscopy (SEM), energy-dispersive spectrometry (EDS) and X-ray diffraction. Impact toughness and abrasion wear resistance tests were conducted. Fracture and worn surfaces were studied. Results indicated that microstructural control during solidifciation is the most valuable tool to attain the optimum combination between impact toughness and wear resistance in hypereutectic iron. Combined action of Nb addition and dynamic solidifciation improves impact toughness and wear resistance even more than the action of each individual factor. In the as-cast condition, impact toughness and abrasion resistance were increased after dynamic solidification compared to statically solidified one by 71.4% and 10%, respectively. This enhancement was increased to 114.3 % and 28.8 % by adding 2% Nb. Lower tempering temperature of 260°C exhibits better impact and abrasion resistance than the sub-critical tempering temperature of 500°C.
文摘This study investigated the microstructure,physical,and mechanical properties of die-cast A308 alloy subjected to mechanical vibration during solidification.Different frequencies(0,20,30,40,and 50 Hz)at constant amplitude(31μm)were employed using a power amplifier as the power input device.X-ray diffraction,optical microscopy,and scanning electron microscopy were used to examine the morphological changes in the cast samples under stationary and vibratory conditions.Metallurgical features of the castings were evaluated using Image J software.The average values of metallurgical features,including primaryα-Al grain size,dendrite arm spacing,average area of eutectic silicon,aspect ratio,and percentage porosity,reduced by 34%,59%,56%,22%,and 62%,respectively,at 30 Hz frequency compared with stationary casting.Mechanical tests of the cast samples showed that the yield strength(YS),ultimate tensile strength(UTS),percentage elongation(%EL),and microhardness(HV)increased by 8%,13%,17%,and 16%,respectively,at 30 Hz frequency compared with stationary casting.The fractured surface of the tensile specimens exhibited mixed-mode fracture behavior because of brittle facets,cleavage facets,ductile tearing,and dimple morphologies.The presence of small dimples showed that plastic deformation occurred before fracture.
基金Project(2011CB013504)supported by National Basic Research Program of ChinaProjects(51109069,11172090)supported by the National Natural Science Foundation of China+1 种基金Project(2009B14014)supported by the Fundamental Research Funds for the Central Universities of ChinaProject Financially supported by the Program for Changjiang Scholars and lnnovative Research Team in University,China
文摘Based on the results of conventional triaxial compression tests and triaxial compression creep tests on Xiangjiaba sandstone,the failure modes in short-term tests and creep tests,fractography of sandstone after creep failure,short-term and creep failure criterion are analyzed.In the short-term tests and creep tests,the sandstone samples fail in a mix mode consisting of shear failure in a single main plane and tensile failure.Confining pressure can restrict brittle failure and enhance the ductility of sandstone.In the creep tests,brittle fracture is reduced and plastic deformation can fully be developed compared to the condition of short-term tests.And the shear fracture surfaces are flat and they are covered by small particles as a result of friction.When confining pressure increases,particle size decreases while the degree of friction on shear plane increases.On the tensile failure plane,the tensile trace and direction of tearing could be clearly observed.There are obvious tearing steps on the tensile failure plane and tearing laminated structure on the front edge of tearing fracture.The same criterion can be used for the short-term and creep behavior,and the fitting effect using the MOGI criterion is better than the DRUCKER PRAGER criterion.The cohesion and friction angle calculated by the MOGI criterion are in good accordance with those calculated by the MOHR COULOMB criterion.
基金supported by the German Aerospace Center (DLR) project “Next Generation Car”
文摘The dynamic tensile behavior of twin-roll cast-rolled and hot-rolled AZ31B magnesium alloy was characterized over strainrates ranging from 0.001 to 375 s^-1 at room temperature using an elaborate dynamic tensile testing method, and the relationshipbetween its mechanical properties and microstructures. It is observed that the sheet has a strong initial basal fiber texture andmechanical twinning becomes prevalent to accommodate the high-rate deformation. The yield strength and ultimate tensile strengthmonotonically increase with increasing the strain rate, while the strain hardening exponent proportionally decreases with increasingthe strain rate due to twinning-induced softening. The total elongation at fracture distinctly decreases as the strain rate increasesunder quasi-static tension, while the effect of strain rate on the total elongation is not distinct under dynamic tension. Fractographicanalysis using a scanning electron microscope reveals that the fracture is a mixed mode of ductile and brittle fracture.
文摘A novel process of fabricating aluminium matrix composites(AMCs)with requisite properties by dispersing rutile particles in the aluminum matrix was studied.A novel bi-stage stir casting method was employed to prepare composites,by varying the mass fractions of the rutile particles as 1%,2%,3%and 4%in AA6061 matrix.The density,tensile strength,hardness and microstructures of composites were investigated.Bi-stage stir casting method engendered AMCs with uniform distribution of the reinforced rutile particles in the AA6061 matrix.This was confirmed by the enhancement of the properties of AMCs over the parent base material.Rutile-reinforced AMCs exhibited higher tensile strength and hardness as compared with unreinforced parent material.The properties of the composites were enhanced with the increase in the mass fraction of the rutile particles.However,beyond 3 wt.%of rutile particles,the tensile strength decreased.The hardness and tensile strength of the AMCs reinforced with 3 wt.%of rutile were improved by 36%and 14%respectively in comparison with those of matrix alone.
文摘Both wear and crack due to heat checking in hot work tool steel are major failure modes.It is desirable to find amethod to lengthen the tool life while reducing manufacturing cost.This paper suggests a method to improve toollife for hot work tool steel(SKD6)with crack by laser-melting process.The method has been evaluated using theimpact and fatigue test results.It is demonstrated that a repair of the crack by a laser-melting process is effectivefor life extension of the damaged tool.
基金the National Natural Science Foundation of China(No.U151013)the Key Research and Development Program of Shanxi Province(Nos.201603D111004 and 201603D121010)+1 种基金the Natural Science Foundation of Shanxi Province of Chinathe Provincial Special Fund for Coordinative Innovation Center of Taiyuan Heavy Machinery Equipmen(No.20171003)
文摘Wear-resistant cladding plates consisting of a substrate(Q345 R) and a clad layer(BTW1) were bonded through hot rolling at the temperature of 1 200 ℃ and a rolling speed of 0.5 m/s. The microhardness of the cladding plate was also tested after being heat treated. The microstructure evolution on the interface of BTW1/Q345 R sheets under various reduction rates was investigated with a scanning electron microscope(SEM) and EBSD. It is found that the micro-cracks and oxide films on the interface disappear when the reduction is 80%, whereas the maximum uniform diffusion distance reaches 10 μm. As a result, a wide range of metallurgical bonding layers forms, which indicates an improved combination between the BTW1 and the Q345 R. Additionally, it is discovered that the unbroken oxide films on the interface are composed of Mn, Si or Cr at the reductions of 50% and 65%. The SEM fractography of tensile specimen demonstrates that the BTW1 has significant dimple characteristics and possesses lower-sized dimples with the increment in reduction, suggesting that the toughness and bonding strength of the cladding plates would be improved by the increase of reduction. The results reveal that a high rolling reduction causes the interfacial oxide film broken and further forms a higher-sized composite metallurgical bonding interface. The peak microhardness is achieved near the interface.
基金This work was financially supported by the Guangdong Province Key Area R&D Program(Grant No.2020B0101340004)the International Science and Technology Cooperation Project of Guangdong Province(Grant No.2021A0505030051)+2 种基金the Innovation and Technology Fund(ITF)(Grant No.ITP/020/21AP)the Young Talent Support Project of Guangzhou Association for Science and Technology(Grant No.QT20220101075)the GDAS'Project of Science and Technology Development(Grant No.2022GDASZH-2022010103).
文摘The present study designed two kinds of Fe-18Mn-1.3C-2Cr-(4,11)Al(wt.%)low-density steels.Tensile and impact tests were carried out to evaluate the work hardening and impact toughness properties via aluminum(Al)alloying control.Meanwhile,microstructure evolution and fracture morphology were investigated by X-ray diffraction(XRD),a scanning electron microscope(SEM)equipped with electron backscatter diffraction(EBSD),a transmission electron microscope(TEM),and a stereo-optical microscope(OM).It is found that the Al addition obviously promotes the dislocation planar slipping,resulting in cleavage and brittle impact fracture in 11wt.%Al steel.Besides,the microband-induced plasticity(MBIP)mechanism is found in 4wt.%Al containing steel,introducing considerable work hardening capacity and impact toughness of 156.8±17.4 J.The present study provides a direct illustration of the relationship between work hardening and impact toughness behaviors of these two low-density steels for potential application as impact-resistant components.