期刊文献+
共找到227,781篇文章
< 1 2 250 >
每页显示 20 50 100
Simulation of Corrosion-Induced Cracking of Reinforced Concrete Based on Fracture Phase Field Method
1
作者 Xiaozhou Xia Changsheng Qin +2 位作者 Guangda Lu Xin Gu Qing Zhang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第3期2257-2276,共20页
Accurate simulation of the cracking process caused by rust expansion of reinforced concrete(RC)structures plays an intuitive role in revealing the corrosion-induced failure mechanism.Considering the quasi-brittle frac... Accurate simulation of the cracking process caused by rust expansion of reinforced concrete(RC)structures plays an intuitive role in revealing the corrosion-induced failure mechanism.Considering the quasi-brittle fracture of concrete,the fracture phase field driven by the compressive-shear term is constructed and added to the traditional brittle fracture phase field model.The rationality of the proposed model is verified by a mixed fracture example under a shear displacement load.Then,the extended fracture phase model is applied to simulate the corrosion-induced cracking process of RC.The cracking patterns caused by non-uniform corrosion expansion are discussed for RC specimens with homogeneous macroscopically or heterogeneous with different polygonal aggregate distributions at the mesoscopic scale.Then,the effects of the protective layer on the crack propagation trajectory and cracking resistance are investigated,illustrating that the cracking angle and cracking resistance increase with the increase of the protective layer thickness,consistent with the experimental observation.Finally,the corrosion-induced cracking process of concrete specimens with large and small spacing rebars is simulated,and the interaction of multiple corrosion cracking is easily influenced by the reinforcement spacing,which increases with the decrease of the steel bar interval.These conclusions play an important role in the design of engineering anti-corrosion measures.The fracture phase field model can provide strong support for the life assessment of RC structures. 展开更多
关键词 fracture phase field corrosion-induced cracking non-uniform corrosion expansion protective layer thickness reinforcement concrete
下载PDF
Multiple Tin Compounds Modified Carbon Fibers to Construct Heterogeneous Interfaces for Corrosion Prevention and Electromagnetic Wave Absorption 被引量:1
2
作者 Zhiqiang Guo Di Lan +6 位作者 Zirui Jia Zhenguo Gao Xuetao Shi Mukun He Hua Guo Guanglei Wu Pengfei Yin 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期507-527,共21页
Currently,the demand for electromagnetic wave(EMW)absorbing materials with specific functions and capable of withstanding harsh environments is becoming increasingly urgent.Multi-component interface engineering is con... Currently,the demand for electromagnetic wave(EMW)absorbing materials with specific functions and capable of withstanding harsh environments is becoming increasingly urgent.Multi-component interface engineering is considered an effective means to achieve high-efficiency EMW absorption.However,interface modulation engineering has not been fully discussed and has great potential in the field of EMW absorption.In this study,multi-component tin compound fiber composites based on carbon fiber(CF)substrate were prepared by electrospinning,hydrothermal synthesis,and high-temperature thermal reduction.By utilizing the different properties of different substances,rich heterogeneous interfaces are constructed.This effectively promotes charge transfer and enhances interfacial polarization and conduction loss.The prepared SnS/SnS_(2)/SnO_(2)/CF composites with abundant heterogeneous interfaces have and exhibit excellent EMW absorption properties at a loading of 50 wt%in epoxy resin.The minimum reflection loss(RL)is−46.74 dB and the maximum effective absorption bandwidth is 5.28 GHz.Moreover,SnS/SnS_(2)/SnO_(2)/CF epoxy composite coatings exhibited long-term corrosion resistance on Q235 steel surfaces.Therefore,this study provides an effective strategy for the design of high-efficiency EMW absorbing materials in complex and harsh environments. 展开更多
关键词 Electrostatic spinning Component regulation Heterogeneous interfaces Electromagnetic wave absorption corrosion protection
下载PDF
Assessing the corrosion protection property of coatings loaded with corrosion inhibitors using the real-time atmospheric corrosion monitoring technique
3
作者 Xiaoxue Wang Lulu Jin +8 位作者 Jinke Wang Rongqiao Wang Xiuchun Liu Kai Gao Jingli Sun Yong Yuan Lingwei Ma Hongchang Qian Dawei Zhang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第1期119-126,共8页
The atmospheric corrosion monitoring(ACM)technique has been widely employed to track the real-time corrosion behavior of metal materials.However,limited studies have applied ACM to the corrosion protection properties ... The atmospheric corrosion monitoring(ACM)technique has been widely employed to track the real-time corrosion behavior of metal materials.However,limited studies have applied ACM to the corrosion protection properties of organic coatings.This study compared a bare epoxy coating with one containing zinc phosphate corrosion inhibitors,both applied on ACM sensors,to observe their corrosion protection properties over time.Coatings with artificial damage via scratches were exposed to immersion and alternating dry and wet environments,which allowed for monitoring galvanic corrosion currents in real-time.Throughout the corrosion tests,the ACM currents of the zinc phosphate/epoxy coating were considerably lower than those of the blank epoxy coating.The trend in ACM current variations closely matched the results obtained from regular electrochemical tests and surface analysis.This alignment highlights the potential of the ACM technique in evaluating the corrosion protection capabilities of organic coatings.Compared with the blank epoxy coating,the zinc phosphate/epoxy coating showed much-decreased ACM current values that confirmed the effective inhibition of zinc phosphate against steel corrosion beneath the damaged coating. 展开更多
关键词 atmospheric corrosion monitoring technology corrosion inhibitor COATING carbon steel corrosion protection
下载PDF
Pulp health and calcific healing of a complicated crown–root fracture with additional root fracture in a maxillary incisor: A case report
4
作者 Na Li Yue-Yue Ren +4 位作者 Ying Tang Qi Yang Tian-Tian Meng Song Li Jing Zhang 《World Journal of Clinical Cases》 SCIE 2025年第3期42-49,共8页
BACKGROUND Complicated crown–root fracture (CRF) involves severe injury to the crown, root,and pulp, and may be accompanied by multiple root fractures. The loss of a toothhas lifelong consequences for children and te... BACKGROUND Complicated crown–root fracture (CRF) involves severe injury to the crown, root,and pulp, and may be accompanied by multiple root fractures. The loss of a toothhas lifelong consequences for children and teenagers, but the maintenance of pulphealth and the calcific healing of multiple root fractures are rarely reported in theliterature.CASE SUMMARY This case reports healing of a permanent tooth with complicated crown–root andadditional root fractures, in which pulp health was maintained. A 10-year-old girlfell and fractured the root of her maxillary left central incisor at the cervical level.After the coronal fragment was repositioned, the tooth was splinted until thetooth was no longer mobile, 2 years later. Eight years after treatment, the toothhas remained asymptomatic with vital pulp and localized gingival overgrowth.Cone-beam computed tomography revealed not only calcified healing of the CRFbut also spontaneous healing in an additional undiagnosed root fracture. Thefracture line on the enamel could not be healed by hard tissue and formed agroove in the cervical crown. It was speculated that the groove was related to thelocalized gingival overgrowth.CONCLUSION This case provides a clinical perspective of the treatment of a tooth with acomplicated CRF and an additional root fracture. 展开更多
关键词 Complicated crown-root fracture Multiple root fracture Spontaneous healing Cone-beam computed tomography Long-term follow-up Case report
下载PDF
Correlation between anxiety, depression, and social stress in young patients with thoracolumbar spine fractures
5
作者 Bo Wang Da Shi +1 位作者 Yin-Di Sun Bo Dong 《World Journal of Psychiatry》 SCIE 2025年第1期83-92,共10页
BACKGROUND Traumatic injuries,such as falling,car accidents,and crushing mostly cause spinal fractures in young and middle-aged people,and>50%of them are thoracolumbar fractures.This kind of fracture is easily comb... BACKGROUND Traumatic injuries,such as falling,car accidents,and crushing mostly cause spinal fractures in young and middle-aged people,and>50%of them are thoracolumbar fractures.This kind of fracture is easily combined with serious injuries to peripheral nerves and soft tissues,which causes paralysis of the lower limbs if there is no timely rehabilitation treatment.Young patients with thoracolumbar fractures find it difficult to recover after the operation,and they are prone to depression,low self-esteem,and other negative emotions.AIM To investigate the association between anxiety,depression,and social stress in young patients with thoracolumbar spine fractures and the effect on rehabilitation outcomes.METHODS This study retrospectively analyzed 100 patients admitted to the orthopedic department of Honghui Hospital,Xi’an Jiaotong University who underwent thoracolumbar spine fracture surgery from January 2022 to June 2023.The general data of the patients were assessed with the Hamilton anxiety scale(HAMA),Hamilton depression scale(HAMD),life events scale,and social support rating scale(SSRS)to identify the correlation between anxiety,depression scores,and social stress and social support.The Japanese Orthopedic Association(JOA)was utilized to evaluate the rehabilitation outcomes of the patients and to analyze the effects of anxiety and depression scores on rehabilitation.RESULTS According to the scores of HAMD and HAMA in all patients,the prevalence of depression in patients was 39%(39/100),and the prevalence of anxiety was 49%(49/100).Patients were categorized into non-depression(n=61)and depression(n=39),non-anxiety(n=51),and anxiety(n=49)groups.Statistically significant differences in gender,occupation,Pittsburgh Sleep Quality Index(PSQI)score,and monthly family income were observed between the non-depression and depression groups(P<0.05).A significant difference in occupation and PSQI score was found between the non-anxiety and anxiety groups.Both depression(r=0.207,P=0.038)and anxiety scores(r=0.473,P<0.001)were significantly and positively correlated with negative life events.The difference in negative life event scores as well as SSRS total and item scores was statist-ically significant between patients in the non-depression and depression groups(P<0.05).The difference between the non-anxiety and anxiety groups was statistically significant(P<0.05)in the negative life event scores as well as the total SSRS scores.Additionally,JOA scores were significantly lower in both anxious and depressed patients.CONCLUSION Young patients with thoracolumbar fractures are prone to anxiety and depression.Patients’anxiety and depression are closely associated with social pressure,which reduces the life pressure of young patients with thoracolumbar fractures,enhances social support,and improves the psychology of anxiety and depression.,which affects patients’recovery. 展开更多
关键词 Patients with thoracolumbar fractures ANXIETY DEPRESSION Social pressure Social support
下载PDF
Effect of heat treatment on stress corrosion cracking, fracture toughness and strength of 7085 aluminum alloy 被引量:20
6
作者 陈送义 陈康华 +2 位作者 董朋轩 叶升平 黄兰萍 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第7期2320-2325,共6页
The influences of heat treatment on stress corrosion cracking (SCC), fracture toughness and strength of 7085 aluminum alloy were investigated by slow strain rate testing, Kahn tear testing combined with scanning ele... The influences of heat treatment on stress corrosion cracking (SCC), fracture toughness and strength of 7085 aluminum alloy were investigated by slow strain rate testing, Kahn tear testing combined with scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results show that the fracture toughness of T74 overaging is increased by 22.9% at the expense of 13.6% strength, and retrogression and reaging (RRA) enhances fracture toughness 14.2% without reducing the strength compared with T6 temper. The fracture toughness of dual-retrogression and reaging (DRRA) is equivalent to that of T74 with an increased strength of 14.6%. The SCC resistance increases in the order: T6〈RRA〈DRRA≈T74. The differences of fracture toughness and SCC were explained on the basis of the role of matrix precipitates and grain boundary orecioitates. 展开更多
关键词 7085 aluminum alloy heat treatment stress corrosion cracking fracture toughness
下载PDF
Effect of Aging on Fracture Toughness and Stress Corrosion Cracking Resistance of Forged 7475 Aluminum Alloy 被引量:8
7
作者 李红英 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2007年第2期191-195,共5页
The effects of two-stage aging and retrogression and reaging heat treatment on the fracture toughness and stress corrosion cracking resistance of 7475 alloy were studied. The fracture toughness, conductivity and stren... The effects of two-stage aging and retrogression and reaging heat treatment on the fracture toughness and stress corrosion cracking resistance of 7475 alloy were studied. The fracture toughness, conductivity and strength of samples of nine groups under duplex aging conditions and three retrogression and reaging heat treatments were also measured. Incorporating the microstructure and property, we found that when the condition of the first order aging kept identical, the fracture toughness and stress corrosion cracking resistance increase with aging time and the second aging temperature. The optimal treatment conditions are ( 115℃×7h + 185 ℃×13h) among all tested two-stage aging treatments. Although the 7475 alloy treated by RRA method shows the highest strength and its stress corrosion cracking resistance after twenty minutes retrogression can also reach the same level as those by the optimal treatment of (115℃×7h+ 185℃×13h ), the fracture toughness is even low. 展开更多
关键词 7475 alloy two-stage aging heat treatment RRA treatment fracture toughness stress corrosion
下载PDF
Effects of laser heat treatment on the fracture morphologies of X80 pipeline steel welded joints by stress corrosion 被引量:4
8
作者 De-jun Kong Cun-dong Ye 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2014年第9期898-905,共8页
The surfaces of X80 pipeline steel welded joints were processed with a CO2 laser, and the effects of laser heat treatment (LHT) on H2S stress corrosion in the National Association of Corrosion Engineers (NACE) sol... The surfaces of X80 pipeline steel welded joints were processed with a CO2 laser, and the effects of laser heat treatment (LHT) on H2S stress corrosion in the National Association of Corrosion Engineers (NACE) solution were analyzed by a slow strain rate test. The fracture morphologies and chemical components of corrosive products before and after LHT were analyzed by scanning electron microscopy and energy-dispersive spectroscopy, respectively, and the mechanism of LHT on stress corrosion cracking was discussed. Results showed that the fracture for welded joints was brittle in its original state, while it was transformed to a ductile fracture after LHT. The tendencies of hydrogen-induced corrosion were reduced, and the stress corrosion sensitivity index decreased from 35.2% to 25.3%, indicating that the stress corrosion resistance of X80 pipeline steel welded joints has been improved by LHT. 展开更多
关键词 pipeline steel welded joints laser heating stress corrosion fracture morphology
下载PDF
Mechanism of corrosion fatigue fracture of friction stir welding joints of 7075 aluminium alloy in 3.5% NaCl solution 被引量:1
9
作者 BAI Lin-yue SHAO Fei +3 位作者 MA Qing-na XU Qian HU Jian-xiang HOU Yi-nan 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第3期1015-1028,共14页
The corrosion fatigue fracture mechanism of friction stir welding(FSW) joints of 7075 aluminium alloy in3.5% NaCl solution is investigated. The corrosion fatigue crack source originates from the junction of nugget zon... The corrosion fatigue fracture mechanism of friction stir welding(FSW) joints of 7075 aluminium alloy in3.5% NaCl solution is investigated. The corrosion fatigue crack source originates from the junction of nugget zone(NZ)and thermo-mechanical affected zone(TMAZ). Multiple crack sources are developed at the same time, and they merge into large cracks along the boundary line of NZ and TMAZ during the propagation stage. Furthermore, a mutual reinforcement coupling always exists between corrosion and cyclic loading during the initiation and propagation of corrosion fatigue crack. It is necessary to consider the effect of welding residual stress for understanding the mechanism of corrosion fatigue fracture of FSW joints. 展开更多
关键词 aluminium alloy friction stir welding welded joint corrosion fatigue fracture
下载PDF
Fracture model for predicting concrete cover-cracking induced by steel corrosion based on interface bond state 被引量:1
10
作者 王显利 郑建军 吴智敏 《Journal of Shanghai University(English Edition)》 CAS 2009年第3期219-224,共6页
Time-to-cracking of the concrete cover induced by the steel corrosion is one of the critical problems faced by engineers, operators and asset managers in making strategies for the maintenance and repairs of reinforced... Time-to-cracking of the concrete cover induced by the steel corrosion is one of the critical problems faced by engineers, operators and asset managers in making strategies for the maintenance and repairs of reinforced concrete (RC) structures affected by corrosion. In this paper, a theoretical model for predicting the time-to-cracking is derived by assuming the bond between the steel bar and the concrete as a linear combination of perfectly smooth and bonded. The model takes into account the characteristics of existing exiguous flaws and initial cracks in the concrete before the load acting on RC structures. The validity of the proposed model is prehminarily verified by comparing the obtained results with the available experimental results. A remarkable advantage of the proposed method is its apphcation to the prediction of the service life of RC structures, made of the deformed steel bars as well as the round bars. By determining an experimental constant a, which is related to the interface bond state between the steel bar and the concrete, the service life of RC structures can be predicted using the proposed scheme. Analysis of major factors affecting the time-to-cracking demonstrates that the length of the initial crack affects the service life of RC structures significantly. Moreover, the larger cover thickness and the smaller diameter of the steel bar within a certain range are beneficial to prolonging the time-to-cracking. 展开更多
关键词 reinforced concrete (RC) time-to-cracking service life corrosion corrosion-induced expansive force
下载PDF
Simulation of Damage Evolution and Study of Multi-Fatigue Source Fracture of Steel Wire in Bridge Cables under the Action of Pre-Corrosion and Fatigue 被引量:2
11
作者 Ying Wang Yuqian Zheng 《Computer Modeling in Engineering & Sciences》 SCIE EI 2019年第8期375-419,共45页
A numerical simulation method for the damage evolution of high-strength steel wire in a bridge cable under the action of pre-corrosion and fatigue is presented in this paper.Based on pitting accelerated crack nucleati... A numerical simulation method for the damage evolution of high-strength steel wire in a bridge cable under the action of pre-corrosion and fatigue is presented in this paper.Based on pitting accelerated crack nucleation theory in combination with continuum mechanics,cellular automata technology(CA)and finite element(FE)analysis,the damage evolution process of steel wire under pre-corrosion and fatigue is simulated.This method automatically generates a high-strength steel wire model with initial random pitting defects,and on the basis of this model,the fatigue damage evolution process is simulated;thus,the fatigue life and fatigue performance of the corroded steel wire can be evaluated.A comparison of the numerical simulation results with the experimental results shows that this method has strong reliability and practicability in predicting the fatigue life of corroded steel wire and simulating the damage evolution process.Based on the method proposed in this paper,the fatigue life of steel wires with different degrees of corrosion under the action of different stress levels is predicted.The results show that as the degree of corrosion increases,the fatigue properties of steel wire gradually decrease,and the influence of existing pitting corrosion on fatigue life is far greater than that on mass loss.Stress concentration is the main cause of fatigue life of corroded steel wire in advance attenuation.In addition,the fracture process of steel wire with multi-fatigue sources and the effect of the number and distribution of pits on the fatigue life of steel wire are studied.The results show that,compared with a stepped pitting distribution,a planar pitting distribution has a greater impact on the damage evolution process.The fatigue life of steel wire is positively correlated with the number of pits and the angle and distance between pits. 展开更多
关键词 Steel wire damage evolution PRE-corrosion and FATIGUE multi-fatigue SOURCE fracture cellular AUTOMATA
下载PDF
FRACTURE序列在中轴型脊柱关节炎骶髂关节结构性病变中的诊断价值
12
作者 章忆惠 程艺璇 +4 位作者 徐磊 徐凌霄 谈文峰 王梦悦 祁良 《放射学实践》 CSCD 北大核心 2024年第7期929-934,共6页
目的:评估限制回波间隔的快速梯度回波类CT成像(FRACTURE)序列在检测中轴型脊柱关节炎(SpA)骶髂关节结构病变中的诊断价值。方法:回顾性分析83例确诊中轴型SpA患者在2021年12月-2022年8月进行骶髂关节MRI和CT检查的影像资料。评估图像包... 目的:评估限制回波间隔的快速梯度回波类CT成像(FRACTURE)序列在检测中轴型脊柱关节炎(SpA)骶髂关节结构病变中的诊断价值。方法:回顾性分析83例确诊中轴型SpA患者在2021年12月-2022年8月进行骶髂关节MRI和CT检查的影像资料。评估图像包括FRACTURE、T_(1)WI序列和CT平扫图像。对骶髂关节的影像图像进行结构性病变评分:关节间隙变化(0~5分)、骨质侵蚀(0~3分)和骨质硬化(0~2分)。根据修改后的纽约标准评分系统对骶髂关节炎进行综合评分。结果:总共有166个骶髂关节图像(83名受试者)可供分析。以CT图像作为参考标准,FRACTURE序列在关节间隙改变、骨质侵蚀、骨质硬化和骶髂关节炎综合评分与CT结果表现出较高的一致性,AUC分别为0.908、0.943、0.918和0.944。与T_(1)WI相比,FRACTURE在关节间隙变化(91.8%vs.70.5%)、骨质侵蚀(93.3%vs.56.4%)、骨质硬化(94%vs.77.6%)和骶髂关节炎综合评分(98.9%vs.75.3%)方面具有更高的诊断准确性。结论:FRACTURE成像可以评估中轴型SpA患者骶髂关节的结构性病变,并显示出良好的诊断性能。 展开更多
关键词 fracture序列 骶髂关节 脊柱关节病 磁共振成像 体层摄影术 X线计算机
下载PDF
Effect of icosahedral phase formation on the stress corrosion cracking(SCC)behaviors of the as-cast Mg-8%Li(in wt.%)based alloys 被引量:1
13
作者 Shuo Wang Daokui Xu +2 位作者 Dongliang Wang Zhiqiang Zhang Baojie Wang 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第1期225-236,共12页
Through exploring the stress corrosion cracking(SCC)behaviors of the as-cast Mg-8%Li and Mg-8%Li-6%Zn-1.2%Y alloys in a 0.1 M NaCl solution,it revealed that the SCC susceptibility index(I_(SCC))of the Mg-8%Li alloy wa... Through exploring the stress corrosion cracking(SCC)behaviors of the as-cast Mg-8%Li and Mg-8%Li-6%Zn-1.2%Y alloys in a 0.1 M NaCl solution,it revealed that the SCC susceptibility index(I_(SCC))of the Mg-8%Li alloy was 47%,whilst the I_(SCC)of the Mg-8%Li-6%Zn-1.2%Y alloy was 68%.Surface,cross-sectional and fractography observations indicated that for the Mg-8%Li alloy,theα-Mg/β-Li interfaces acted as the preferential crack initiation sites and propagation paths during the SCC process.With regard to the Mg-8%Li-6%Zn-1.2%Y alloy,the crack initiation sites included the I-phase and the interfaces of I-phase/β-Li andα-Mg/β-Li,and the preferential propagation paths were the I-phase/β-Li andα-Mg/β-Li interfaces.Moreover,the SCC of the two alloys was concerned with hydrogen embrittlement(HE)mechanism. 展开更多
关键词 Magnesium-lithium alloy Stress corrosion cracking I-phase fracture analysis
下载PDF
Prediction model for corrosion rate of low-alloy steels under atmospheric conditions using machine learning algorithms 被引量:3
14
作者 Jingou Kuang Zhilin Long 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第2期337-350,共14页
This work constructed a machine learning(ML)model to predict the atmospheric corrosion rate of low-alloy steels(LAS).The material properties of LAS,environmental factors,and exposure time were used as the input,while ... This work constructed a machine learning(ML)model to predict the atmospheric corrosion rate of low-alloy steels(LAS).The material properties of LAS,environmental factors,and exposure time were used as the input,while the corrosion rate as the output.6 dif-ferent ML algorithms were used to construct the proposed model.Through optimization and filtering,the eXtreme gradient boosting(XG-Boost)model exhibited good corrosion rate prediction accuracy.The features of material properties were then transformed into atomic and physical features using the proposed property transformation approach,and the dominant descriptors that affected the corrosion rate were filtered using the recursive feature elimination(RFE)as well as XGBoost methods.The established ML models exhibited better predic-tion performance and generalization ability via property transformation descriptors.In addition,the SHapley additive exPlanations(SHAP)method was applied to analyze the relationship between the descriptors and corrosion rate.The results showed that the property transformation model could effectively help with analyzing the corrosion behavior,thereby significantly improving the generalization ability of corrosion rate prediction models. 展开更多
关键词 machine learning low-alloy steel atmospheric corrosion prediction corrosion rate feature fusion
下载PDF
High corrosion and wear resistant electroless Ni–P gradient coatings on aviation aluminum alloy parts 被引量:3
15
作者 Bo Wang Jiawei Li +2 位作者 Zhihui Xie Gengjie Wang Gang Yu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CSCD 2024年第1期155-164,共10页
A Ni–P alloy gradient coating consisting of multiple electroless Ni–P layers with various phosphorus contents was prepared on the aviation aluminum alloy. Several characterization and electrochemical techniques were... A Ni–P alloy gradient coating consisting of multiple electroless Ni–P layers with various phosphorus contents was prepared on the aviation aluminum alloy. Several characterization and electrochemical techniques were used to characterize the different Ni–P coatings’ morphologies, phase structures, elemental compositions, and corrosion protection. The gradient coating showed good adhesion and high corrosion and wear resistance, enabling the application of aluminum alloy in harsh environments. The results showed that the double zinc immersion was vital in obtaining excellent adhesion (81.2 N). The optimal coating was not peeled and shredded even after bending tests with angles higher than 90°and was not corroded visually after 500 h of neutral salt spray test at 35℃. The high corrosion resistance was attributed to the misaligning of these micro defects in the three different nickel alloy layers and the amorphous structure of the high P content in the outer layer. These findings guide the exploration of functional gradient coatings that meet the high application requirement of aluminum alloy parts in complicated and harsh aviation environments. 展开更多
关键词 aluminum alloy ELECTROLESS nickel coating corrosion ADHESION
下载PDF
High-throughput calculations combining machine learning to investigate the corrosion properties of binary Mg alloys 被引量:4
16
作者 Yaowei Wang Tian Xie +4 位作者 Qingli Tang Mingxu Wang Tao Ying Hong Zhu Xiaoqin Zeng 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第4期1406-1418,共13页
Magnesium(Mg)alloys have shown great prospects as both structural and biomedical materials,while poor corrosion resistance limits their further application.In this work,to avoid the time-consuming and laborious experi... Magnesium(Mg)alloys have shown great prospects as both structural and biomedical materials,while poor corrosion resistance limits their further application.In this work,to avoid the time-consuming and laborious experiment trial,a high-throughput computational strategy based on first-principles calculations is designed for screening corrosion-resistant binary Mg alloy with intermetallics,from both the thermodynamic and kinetic perspectives.The stable binary Mg intermetallics with low equilibrium potential difference with respect to the Mg matrix are firstly identified.Then,the hydrogen adsorption energies on the surfaces of these Mg intermetallics are calculated,and the corrosion exchange current density is further calculated by a hydrogen evolution reaction(HER)kinetic model.Several intermetallics,e.g.Y_(3)Mg,Y_(2)Mg and La_(5)Mg,are identified to be promising intermetallics which might effectively hinder the cathodic HER.Furthermore,machine learning(ML)models are developed to predict Mg intermetallics with proper hydrogen adsorption energy employing work function(W_(f))and weighted first ionization energy(WFIE).The generalization of the ML models is tested on five new binary Mg intermetallics with the average root mean square error(RMSE)of 0.11 eV.This study not only predicts some promising binary Mg intermetallics which may suppress the galvanic corrosion,but also provides a high-throughput screening strategy and ML models for the design of corrosion-resistant alloy,which can be extended to ternary Mg alloys or other alloy systems. 展开更多
关键词 Mg intermetallics corrosion property HIGH-THROUGHPUT Density functional theory Machine learning
下载PDF
Production induced fracture closure of deep shale gas well under thermo-hydro-mechanical conditions 被引量:1
17
作者 Shi-Ming Wei Yang Xia +4 位作者 Yan Jin Xu-Yang Guo Jing-Yu Zi Kai-Xuan Qiu Si-Yuan Chen 《Petroleum Science》 SCIE EI CAS CSCD 2024年第3期1796-1813,共18页
Deep shale gas reservoirs have geological characteristics of high temperature,high pressure,high stress,and inferior ability to pass through fluids.The multi-stage fractured horizontal well is the key to exploiting th... Deep shale gas reservoirs have geological characteristics of high temperature,high pressure,high stress,and inferior ability to pass through fluids.The multi-stage fractured horizontal well is the key to exploiting the deep shale gas reservoir.However,during the production process,the effectiveness of the hydraulic fracture network decreases with the closure of fractures,which accelerates the decline of shale gas production.In this paper,we addressed the problems of unclear fracture closure mechanisms and low accuracy of shale gas production prediction during deep shale gas production.Then we established the fluid—solid—heat coupled model coupling the deformation and fluid flow among the fracture surface,proppant and the shale matrix.When the fluid—solid—heat coupled model was applied to the fracture network,it was well solved by our numerical method named discontinuous discrete fracture method.Compared with the conventional discrete fracture method,the discontinuous discrete fracture method can describe the three-dimensional morphology of the fracture while considering the effect of the change of fracture surface permeation coefficient on the coupled fracture—matrix flow and describing the displacement discontinuity across the fracture.Numerical simulations revealed that the degree of fracture closure increases as the production time proceeds,and the degree of closure of the secondary fractures is higher than that of the primary fractures.Shale creep and proppant embedment both increase the degree of fracture closure.The reduction in fracture surface permeability due to proppant embedment reduces the rate of fluid transfer between matrix and fracture,which has often been overlooked in the past.However,it significantly impacts shale gas production,with calculations showing a 24.7%cumulative three-year yield reduction.This study is helpful to understand the mechanism of hydraulic fracture closure.Therefore,it provides the theoretical guidance for maintaining the long-term effectiveness of hydraulic fractures. 展开更多
关键词 Shalegas fracture closure Fluid-solid-heat coupling Discontinuous discrete fracture
下载PDF
Study of hydro-mechanical behaviours of rough rock fracture with shear dilatancy and asperities using shear-flow model 被引量:1
18
作者 Luyu Wang Weizhong Chen Qun Sui 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第10期4004-4016,共13页
The geometric properties of fracture surfaces significantly influence shear-seepage in rock fractures,introducing complexities to fracture modelling.The present study focuses on the hydro-mechanical behaviours of roug... The geometric properties of fracture surfaces significantly influence shear-seepage in rock fractures,introducing complexities to fracture modelling.The present study focuses on the hydro-mechanical behaviours of rough rock fractures during shear-seepage processes to reveal how dilatancy and fracture asperities affect these phenomena.To achieve this,an improved shear-flow model(SFM)is proposed with the incorporation of dilatancy effect and asperities.In particular,shear dilatancy is accounted for in both the elastic and plastic stages,in contrast to some existing models that only consider it in the elastic stage.Depending on the computation approaches for the peak dilatancy angle,three different versions of the SFM are derived based on Mohr-Coulomb,joint roughness coefficient-joint compressive strength(JRC-JCS),and Grasselli’s theories.Notably,this is a new attempt that utilizes Grasselli’s model in shearseepage analysis.An advanced parameter optimization method is introduced to accurately determine model parameters,addressing the issue of local optima inherent in some conventional methods.Then,model performance is evaluated against existing experimental results.The findings demonstrate that the SFM effectively reproduces the shear-seepage characteristics of rock fracture across a wide range of stress levels.Further sensitivity analysis reveals how dilatancy and asperity affect hydraulic properties.The relation between hydro-mechanical properties(dilatancy displacement and hydraulic conductivity)and asperity parameters is analysed.Several profound understandings of the shear-seepage process are obtained by exploring the phenomenon under various conditions. 展开更多
关键词 Rock fracture Stress-seepage coupling Shear-flow model fracture asperity Shear dilatancy
下载PDF
Numerical modeling of fracture propagation of supercritical CO_(2)compound fracturing 被引量:1
19
作者 Hao Chen Yong Kang +2 位作者 Wanchun Jin Changhai Li Can Cai 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第7期2607-2628,共22页
The exploitation of shale gas is promising due to depletion of the conventional energy and intensification of the greenhouse effect.In this paper,we proposed a heat-fluid-solid coupling damage model of supercritical C... The exploitation of shale gas is promising due to depletion of the conventional energy and intensification of the greenhouse effect.In this paper,we proposed a heat-fluid-solid coupling damage model of supercritical CO_(2)(SC-CO_(2))compound fracturing which is expected to be an efficient and environmentally friendly way to develop shale gas.The coupling model is solved by the finite element method,and the results are in good agreement with the analytical solutions and fracturing experiments.Based on this model,the fracture propagation characteristics at the two stages of compound fracturing are studied and the influence of pressurization rate,in situ stress,bedding angle,and other factors are considered.The results show that at the SC-CO_(2)fracturing stage,a lower pressurization rate is conducive to formation of the branches around main fractures,while a higher pressurization rate inhibits formation of the branches around main fractures and promotes formation of the main fractures.Both bedding and in situ stress play a dominant role in the fracture propagation.When the in situ stress ratio(δ_(x)/δ_(y))is 1,the presence of bedding can reduce the initiation pressure and failure pressure.Nevertheless,it will cause the fracture to propagate along the bedding direction,reducing the fracture complexity.In rocks without bedding,hydraulic fracturing has the lengthening and widening effects for SC-CO_(2)induced fracture.In shale,fractures induced at the hydraulic fracturing stage are more likely to be dominated by in situ stresses and have a shorter reorientation radius.Therefore,fracture branches propagating along the maximum principal stress direction may be generated around the main fractures induced by SC-CO_(2)at the hydraulic fracturing stage.When the branches converge with the main fractures,fracture zones are easily formed,and thus the fracture complexity and damage area can be significantly increased.The results are instructive for the design and application of SC-CO_(2)compound fracturing. 展开更多
关键词 Compound fracturing fracture propagation Finite element method Damage evolution
下载PDF
Prediction models of burst strength degradation for casing with considerations of both wear and corrosion 被引量:2
20
作者 Jie-Li Wang Wen-Jun Huang De-Li Gao 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期458-474,共17页
Casing wear and casing corrosion are serious problems affecting casing integrity failure in deep and ultra-deep wells.This paper aims to predict the casing burst strength with considerations of both wear and corrosion... Casing wear and casing corrosion are serious problems affecting casing integrity failure in deep and ultra-deep wells.This paper aims to predict the casing burst strength with considerations of both wear and corrosion.Firstly,the crescent wear shape is simplified into three categories according to common mathematical models.Then,based on the mechano-electrochemical(M-E)interaction,the prediction model of corrosion depth is built with worn depth as the initial condition,and the prediction models of burst strength of the worn casing and corroded casing are obtained.Secondly,the accuracy of different prediction models is validated by numerical simulation,and the main influence factors on casing strength are obtained.At last,the theoretical models are applied to an ultra-deep well in Northwest China,and the dangerous well sections caused by wear and corrosion are predicted,and the corrosion rate threshold to ensure the safety of casing is obtained.The results show that the existence of wear defects results in a stress concentration and enhanced M-E interaction on corrosion depth growth.The accuracy of different mathematical models is different:the slot ring model is most accurate for predicting corrosion depth,and the eccentric model is most accurate for predicting the burst strength of corroded casing.The burst strength of the casing will be overestimated by more than one-third if the M-E interaction is neglected,so the coupling effect of wear and corrosion should be sufficiently considered in casing integrity evaluation. 展开更多
关键词 Deep well Casing integrity Casing wear Casing corrosion Burst strength
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部