The purpose of the present study was to evaluate the effect ofA1203 content on the fracture property of all-ceramics ZrO2. To improve the all-ceramics ZrO2 restoration mechanics properity ,96 samples containing 0,5,10...The purpose of the present study was to evaluate the effect ofA1203 content on the fracture property of all-ceramics ZrO2. To improve the all-ceramics ZrO2 restoration mechanics properity ,96 samples containing 0,5,10 and 15 wt% of A1203 particles were prepared by cold isostatic pressing (200 MPa) and 1 550 ℃ sintered .The phase was analyzed by X-ray diffraction analysis and the bulk densities of the samples were made using Archimedes principle. Samples were randomly divided into four groups. In each group, 24 specimens were prepared so that the angle between notch and specimen's long axis is 90° and 60°. Notch depths were 1 mm for all samples. Samples were loaded with three-point bending method. 90° cut samples were used to measure fracture toughness while 60°cut samples were used to observe fracture curve by taking points on the fracture extension path under microscope, plotting points on coordinates, generating fitting curve by software "Origin", and analyzing the microstructure of the specimen fracture surfaces by scanning electron microscopy (SEM).The results show that the increment ofA1203 has insignificant effect on the densification of all-ceramic ZrO2.XRD analysis shows that the specimen is comprised of t-ZrO2 and a- A1203 before fracture while fracture surface is m-ZrO2, t-ZrO2 and a-A1203. ZrO2 containing 10% A1203 has the optimum mechanical properties and unconspicuous crack propagation and distribution. The observations may provide a reference for the materials selection, shaoe design, and production orocess of all-ceramic crown and bridge.展开更多
Multiple fractured horizontal well(MFHW) is widely applied in the development of shale gas. To investigate the gas flow characteristics in shale, based on a new dual mechanism triple continuum model, an analytical sol...Multiple fractured horizontal well(MFHW) is widely applied in the development of shale gas. To investigate the gas flow characteristics in shale, based on a new dual mechanism triple continuum model, an analytical solution for MFHW surrounded by stimulated reservoir volume(SRV) was presented. Pressure and pressure derivative curves were used to identify the characteristics of flow regimes in shale. Blasingame type curves were established to evaluate the effects of sensitive parameters on rate decline curves, which indicates that the whole flow regimes could be divided into transient flow, feeding flow, and pseudo steady state flow. In feeding flow regime, the production of gas well is gradually fed by adsorbed gases in sub matrix, and free gases in matrix. The proportion of different gas sources to well production is determined by such parameters as storability ratios of triple continuum, transmissibility coefficients controlled by dual flow mechanism and fracture conductivity.展开更多
基金Funded by the Technology Department Science Fund of Sichaun(No.2011GZ011520)
文摘The purpose of the present study was to evaluate the effect ofA1203 content on the fracture property of all-ceramics ZrO2. To improve the all-ceramics ZrO2 restoration mechanics properity ,96 samples containing 0,5,10 and 15 wt% of A1203 particles were prepared by cold isostatic pressing (200 MPa) and 1 550 ℃ sintered .The phase was analyzed by X-ray diffraction analysis and the bulk densities of the samples were made using Archimedes principle. Samples were randomly divided into four groups. In each group, 24 specimens were prepared so that the angle between notch and specimen's long axis is 90° and 60°. Notch depths were 1 mm for all samples. Samples were loaded with three-point bending method. 90° cut samples were used to measure fracture toughness while 60°cut samples were used to observe fracture curve by taking points on the fracture extension path under microscope, plotting points on coordinates, generating fitting curve by software "Origin", and analyzing the microstructure of the specimen fracture surfaces by scanning electron microscopy (SEM).The results show that the increment ofA1203 has insignificant effect on the densification of all-ceramic ZrO2.XRD analysis shows that the specimen is comprised of t-ZrO2 and a- A1203 before fracture while fracture surface is m-ZrO2, t-ZrO2 and a-A1203. ZrO2 containing 10% A1203 has the optimum mechanical properties and unconspicuous crack propagation and distribution. The observations may provide a reference for the materials selection, shaoe design, and production orocess of all-ceramic crown and bridge.
基金Project(2011ZX05015)supported by Important National Science and Technology Specific Projects of the "Twelfth Five-years" Plan Period,China
文摘Multiple fractured horizontal well(MFHW) is widely applied in the development of shale gas. To investigate the gas flow characteristics in shale, based on a new dual mechanism triple continuum model, an analytical solution for MFHW surrounded by stimulated reservoir volume(SRV) was presented. Pressure and pressure derivative curves were used to identify the characteristics of flow regimes in shale. Blasingame type curves were established to evaluate the effects of sensitive parameters on rate decline curves, which indicates that the whole flow regimes could be divided into transient flow, feeding flow, and pseudo steady state flow. In feeding flow regime, the production of gas well is gradually fed by adsorbed gases in sub matrix, and free gases in matrix. The proportion of different gas sources to well production is determined by such parameters as storability ratios of triple continuum, transmissibility coefficients controlled by dual flow mechanism and fracture conductivity.