期刊文献+
共找到36篇文章
< 1 2 >
每页显示 20 50 100
Experimental study of coal fracture dynamics under the influence of cyclic freezing-thawing using shear elastic waves 被引量:1
1
作者 Petr V.Nikolenko Svetlana A.Epshtein +1 位作者 Vladimir L.Shkuratnik Polina S.Anufrenkova 《International Journal of Coal Science & Technology》 EI CAS CSCD 2021年第4期562-574,共13页
Cyclic freezing-thawing can lead to fracture development in coal,affecting its mechanical and consumer properties.To study crack formations in coal,an ultrasonic sounding method using shear polarized waves was propose... Cyclic freezing-thawing can lead to fracture development in coal,affecting its mechanical and consumer properties.To study crack formations in coal,an ultrasonic sounding method using shear polarized waves was proposed.Samples of three coal types(anthracite,lignite and hard coal)were tested.The research results show that,in contrast to the shear wave velocity,the shear wave amplitude is extremely sensitive to the formation of new cracks at the early stages of cyclic freezing-thawing.Tests also show an inverse correlation between coal compressive strength and its tendency to form cracks under temperature impacts;shear wave attenuation increases more sharply in high-rank coals after the first freezing cycle.Spectral analysis of the received signals also confirmed significant crack formation in anthracite after the first freeze-thaw cycle.The initial anisotropy was determined,and its decrease with an increase in the number of freeze-thaw cycles was shown.The data obtained forms an experimental basis for the development of new approaches to preserve coal consumer properties during storage and transportation under severe natural and climatic conditions. 展开更多
关键词 COAL Cyclic freezing-thawing ULTRASONIC Shear wave fracture dynamics
下载PDF
Incubation time fracture criterion for FEM simulations 被引量:2
2
作者 Vladimir Bratov 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2011年第4期541-549,共9页
The paper is discussing problems connected with embedment of the incubation time criterion for brittle fracture into finite element computational schemes. Incubation time fracture criterion is reviewed; practical ques... The paper is discussing problems connected with embedment of the incubation time criterion for brittle fracture into finite element computational schemes. Incubation time fracture criterion is reviewed; practical questions of its numerical implementation are extensively discussed. Several examples of how the incubation time fracture criterion can be used as fracture condition in finite element computations are given. The examples include simulations of dynamic crack propagation and arrest, impact crater formation (i.e. fracture in initially intact media), spall fracture in plates, propagation of cracks in pipelines. Applicability of the approach to model initiation, development and arrest of dynamic fracture is claimed. 展开更多
关键词 fracture dynamics Incubation time Crack dy-namics Finite element method fracture arrest
下载PDF
Predicting impact strength of perforated targets using artificial neural networks trained on FEM-generated datasets
3
作者 Nikita Kazarinov Aleksandr Khvorov 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期32-44,共13页
The paper considers application of artificial neural networks(ANNs)for fast numerical evaluation of a residual impactor velocity for a family of perforated PMMA(Polymethylmethacrylate)targets.The ANN models were train... The paper considers application of artificial neural networks(ANNs)for fast numerical evaluation of a residual impactor velocity for a family of perforated PMMA(Polymethylmethacrylate)targets.The ANN models were trained using sets of numerical results on impact of PMMA plates obtained via dynamic FEM coupled with incubation time fracture criterion.The developed approach makes it possible to evaluate the impact strength of a particular target configuration without complicated FEM calculations which require considerable computational resources.Moreover,it is shown that the ANN models are able to predict results for the configurations which cannot be processed using the developed FEM routine due to numerical instabilities and errors:the trained neural network uses information from successful computations to obtain results for the problematic cases.A simple static problem of a perforated plate deformation is discussed prior to the impact problem and preferable ANN architectures are presented for both problems.Some insight into the perforation pattern optimization using a genetic algorithm coupled with the ANN is also made and optimized perforation patterns which theoretically enhance the target impact strength are constructed. 展开更多
关键词 Machine learning IMPACT Dynamic fracture FEM Mesh distortion Optimization
下载PDF
A NOVEL METHOD FOR MEASURING AND CHARACTERIZING DYNAMIC FRACTURE-INITIATION TOUGHNESS OF ELASTIC-PLASTIC MATERIALS 被引量:7
4
作者 Gong Nengping Xia Yuanming 《Acta Mechanica Solida Sinica》 SCIE EI 2002年第2期149-155,共7页
The characterization and testing methods of the dynamic fractureinitiation toughness of elas- tic-plastic materials under tensileimpact are studied. By using the self-designed bar-bar tensile impactappa- ratus, a nove... The characterization and testing methods of the dynamic fractureinitiation toughness of elas- tic-plastic materials under tensileimpact are studied. By using the self-designed bar-bar tensile impactappa- ratus, a novel test method for studying dynamicfracture-initiation ahs been proposed based on the one-di- mensionaltest principle. The curve of average load v. s. displacement (P-δ)is smooth until unstable crack propagation, and the kinetic energywhich does not contribute to the crack growth can be removed fromtotal work done by external-force to the specimen. 展开更多
关键词 elastic-plastic materials circumferentially notched short cylinder tensileimpact dynamic fracture toughness J_ID
下载PDF
A NOVEL METHOD FOR EVALUATING PLANE STRESS DYNAMIC FRACTURE TOUGHNESS OF 0Cr18Ni10Ti STAINLESS STEEL WELDED JOINTS 被引量:2
5
作者 Z.J. Xu Y.L. Li 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2008年第4期303-312,共10页
A novel method was proposed for the evaluation of Mode I dynamic fracture toughness (DFT) under plane stress and small scale yielding conditions for welded joints of stainless steel (SS), 0Cr18Ni10Ti. In a hybrid ... A novel method was proposed for the evaluation of Mode I dynamic fracture toughness (DFT) under plane stress and small scale yielding conditions for welded joints of stainless steel (SS), 0Cr18Ni10Ti. In a hybrid experimental-numerical approach, the experiments were carried out on the Hopkinson pressure bar apparatus, and three dimensional (3D) transient numerical simulations were performed by a finite element (FE) computer program. Macroscopical plastic deformation was observed at the loading and supporting points, on the specimens, after the test, which could cause a large error if omitted in the numerical simulation. Therefore, elustic-viscoplustic analysis was performed on the specimen by adopting the Johnson-Cook (J-C) model to describe the rate-dependent plastic flow behavior of the material. The material heterogeneity in the mismatched welded joints, induced by the difference in the base metal (BM) and the weld metal (WM) in yield stress, has also been taken into consideration by using the J-C models separately. Good accordance was obtained between the experimental and the computational results by the present approach. The relationship between plane stress DFT and loading rate was also obtained on the order of 108 MPa.m^1/2.s^-1. 展开更多
关键词 0CR18NI10TI Welded joint High strain rate Dynamic fracture Plane stress
下载PDF
Dynamic fracture toughness of high strength metals under impact loading:increase or decrease 被引量:5
6
作者 Ze-Jian Xu Yu-Long Li 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2011年第4期559-566,共8页
An elusive phenomenon is observed in previous investigations on dynamic fracture that the dynamic fracture toughness (DFT) of high strength metals always increases with the loading rate on the order of TPa.m1/2.s-1.... An elusive phenomenon is observed in previous investigations on dynamic fracture that the dynamic fracture toughness (DFT) of high strength metals always increases with the loading rate on the order of TPa.m1/2.s-1. For the purpose of verification, variation of DFT with the loading rate for two high strength steels commonly used in the aviation industry, 30CrMnSiA and 40Cr, is studied in this work. Results of the experiments are compared, which were conducted on the modified split Hopkinson pressure bar (SHPB) apparatus, with striker velocities ranging from 9.2 to 24.1 m/s and a constant value of 16.3 m/s for 30CrMnSiA and 40Cr, respectively. It is observed that for 30CrMnSiA, the crack tip loading rate increases with the increase of the striker velocity, while the fracture initiation time and the DFT simultaneously decrease. However, in the tests of 40Cr, there is also an increasing tendency of DFT, similar to other reports. Through an in-depth investigation on the relationship between the dynamic stress intensity factor (DSIF) and the loading rate, it is concluded that the generally increasing tendency in previous studies could be false, which is induced from a limited striker velocity domain and the errors existing in the experimental and numerical processes. To disclose the real dependency of DFT on the loading rate, experimentsneed to be performed in a comparatively large striker velocity range. 展开更多
关键词 Dynamic fracture. fracture toughness Loadingrate effect - Hopkinson pressure bar High strength metal
下载PDF
Application of split Hopkinson tension bar technique to the study of dynamic fracture properties of materials 被引量:1
7
作者 Ze-Jian Xu Yu-Long Li Feng-Lei Huang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2012年第2期424-431,共8页
A novel approach is proposed in determining dy- namic fracture toughness (DFT) of high strength steel, using the split Hopkinson tension bar (SHTB) apparatus, com- bined with a hybrid experimental-numerical method... A novel approach is proposed in determining dy- namic fracture toughness (DFT) of high strength steel, using the split Hopkinson tension bar (SHTB) apparatus, com- bined with a hybrid experimental-numerical method. The center-cracked tension specimen is connected between the bars with a specially designed fixture device. The fracture initiation time is measured by the strain gage method, and dynamic stress intensity factors (DSIF) are obtained with the aid of 3D finite element analysis (FEA). In this approach, the dimensions of the specimen are not restricted by the connec- tion strength or the stress-state equilibrium conditions, and hence plane strain state can be attained conveniently at the crack tip. Through comparison between the obtained results and those in open publication, it is concluded that the ex- perimental data are valid, and the method proposed here is reliable. The validity of the obtained DFT is checked with the ASTM criteria, and fracture surfaces are examined at the end of paper. 展开更多
关键词 Split Hopkinson tension bar Dynamic fracture toughness Hybrid experimental-numerical method High loading rate Failure mode
下载PDF
Numerical modelling of flow and transport in rough fractures 被引量:2
8
作者 Scott Briggs Bryan W.Karney Brent E.Sleep 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2014年第6期535-545,共11页
Simulation of flow and transport through rough walled rock fractures is investigated using the latticeBoltzmann method (LBM) and random walk (RW), respectively. The numerical implementation isdeveloped and validat... Simulation of flow and transport through rough walled rock fractures is investigated using the latticeBoltzmann method (LBM) and random walk (RW), respectively. The numerical implementation isdeveloped and validated on general purpose graphic processing units (GPGPUs). Both the LBM and RWmethod are well suited to parallel implementation on GPGPUs because they require only next-neighbourcommunication and thus can reduce expenses. The LBM model is an order of magnitude faster onGPGPUs than published results for LBM simulations run on modern CPUs. The fluid model is verified forparallel plate flow, backward facing step and single fracture flow; and the RWmodel is verified for pointsourcediffusion, Taylor-Aris dispersion and breakthrough behaviour in a single fracture. Both algorithmsplace limitations on the discrete displacement of fluid or particle transport per time step to minimise thenumerical error that must be considered during implementation. 2014 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting byElsevier B.V. All rights reserved. 展开更多
关键词 Hydrogeology fracture flow Solute transport Computational fluid dynamics Lattice Boltzmann method(LBM) Random walk(RW)
下载PDF
Study on dynamic fracture behavior of TA15ELI alloy under mode-Ⅱ loading by caustics method
9
作者 LIU Rui,HUI Songxiao,YE Wenjun,MI Xujun,XIONG Baiqing,and YOU Zhenping State Key Laboratory for Fabrication & Processing of Nonferrous Metals,General Research Institute for Nonferrous Metals,Beijing 100088,China 《Rare Metals》 SCIE EI CAS CSCD 2010年第4期361-365,共5页
The dynamic fracture behavior of TA 15ELI alloy with lath-like microstructure was studied by caustics method. Specimens with double-side pre-notch were tested under the plane-stress condition at mode-II loading with a... The dynamic fracture behavior of TA 15ELI alloy with lath-like microstructure was studied by caustics method. Specimens with double-side pre-notch were tested under the plane-stress condition at mode-II loading with a drop hammer system. Caustics information recorded in films illustrated the histories of both crack length and stress intensity factor. The dynamic fracture toughness and crack growth velocity of TA15ELI with lath-like microstructure were determined to be 279 MPa.m1/2 and 32.6 m/s, respectively. SEM fractograph analysis showed a mixed feature of mainly plastic mode for TA 15ELI alloy in dynamic mode-II fracture. Shear localization was observed in the vicinity of the crack initiation area. 展开更多
关键词 titanium alloy dynamic fracture caustics method fracture toughness crack growth
下载PDF
DYNAMIC FRACTURE TOUGHNESS OF ULTRASTRENGTH STEELS FOR AIRCRAFT
10
作者 XU Changgan ZENG Zhongping Beijing University of Aeronautics and Astronautics,Beijing,China 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1991年第3期209-213,共5页
The plots of load vs deflection(P-D)for two ultra-strength steels 30CrMnSiNi2A and 300M has been examined on a Charpy impact tester with digital memory and microcomputer. A criterion was found to availably represent t... The plots of load vs deflection(P-D)for two ultra-strength steels 30CrMnSiNi2A and 300M has been examined on a Charpy impact tester with digital memory and microcomputer. A criterion was found to availably represent the dynamic fracture toughness,K_(Ic)~D ,of the steels under impact loading.The K_(Ic)~D,.can be calculated with suggesting that the turning point of change in compliance on the P-D plot is the point of destabilized crack propagation.The K_(Ic)~D of steel 300M,quenched at 870℃ ,separately tempered at 300℃ and 450℃,was esti- mated to be 55—70 MN/m^(3/2)and 54—67 MN/m^(3/2)respectively.The K_(Ic)calculated with accuracy about 20% seems to be available to the engineering evaluation. 展开更多
关键词 ultra-strength steel impact toughness dynamic fracture toughness
下载PDF
Experimental study on dynamic pipe fracture in consideration of hydropower plant model
11
作者 Kazumi ISHIKAWA Yukio KONO +2 位作者 Akira HAGA Kazuo KATO Kota SUGAWARA 《Water Science and Engineering》 EI CAS 2009年第4期60-68,共9页
In the case of sudden valve closure, water hammer creates the most powerful pressure and damage to pipeline systems. The best way to protect the pipeline system is to eliminate water hammer. The main reasons for water... In the case of sudden valve closure, water hammer creates the most powerful pressure and damage to pipeline systems. The best way to protect the pipeline system is to eliminate water hammer. The main reasons for water hammer occurrence are valve closure, high initial velocity, and static pressure. However, it is difficult to eliminate water hammer. Water hammer tends to occur when the valve is being closed. In this study, the pipe fracture caused by static water pressure, gradually increasing pressure, and suddenly increasing pressure were compared experimentally in a breaking PVC test pipe. The quasi-static zone, the dynamic zone, and the transition zone are defined through the results of those experiments, with consideration of the fracture patterns of test pipes and impulses. The maximum pressure results were used to design the pipeline even though it is in the dynamic zone. 展开更多
关键词 hydropower plant dynamic pipe fracture pipeline IMPULSE water hammer
下载PDF
CRACK INITIATION POINT DETERMINATION AND DYNAMIC FRACTURE TOUGHNESS FOR CHARPY PRE-CRACKED SPECIMEN
12
作者 LIN Junshan YAN Wenbin TU Mingjing Xi’an Jiaotong University,Xi’an,China 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1992年第5期379-384,共6页
The method to detect the crack initiation point of Charpy pre-cracked specimen under dy- namie loading was studied using strain gauge.The load-time curve and nominal strain-time curve at the crack tip for impact testi... The method to detect the crack initiation point of Charpy pre-cracked specimen under dy- namie loading was studied using strain gauge.The load-time curve and nominal strain-time curve at the crack tip for impact testing specinens may be shnultaneously measured by twin-channel oscilloscope with high speed sampling and diskette storing.Based on the dynam- ic finite element simulation of impact response of Charpy specimen,the measuring method of dynamic fracture toughness was analysed and some problems in previous dynamic fracture toughness measurement were discussed. 展开更多
关键词 crack initiation point strain gauge dynamic fracture toughness
下载PDF
Dynamic Fracture of Ti-5553 Alloy in Taylor Impact Test
13
作者 Denghui Zhao Qian Wang +1 位作者 Lin Wang Maosheng Zhi 《Journal of Beijing Institute of Technology》 EI CAS 2017年第1期135-142,共8页
The dynamic fracture behavior of a new near-beta Ti-5Al-5Mo-5V-3Cr-1Fe(Ti-5553)alloy under a high strain rate loading was investigated systemically using the Taylor impact test,over the impact velocity ranging from1... The dynamic fracture behavior of a new near-beta Ti-5Al-5Mo-5V-3Cr-1Fe(Ti-5553)alloy under a high strain rate loading was investigated systemically using the Taylor impact test,over the impact velocity ranging from156 ms-1 to 256 ms-1.An optical microscope(OM)and a scanning electron microscope(SEM)were used to characterize the microstructure evolution.The experimental results have demonstrated that the velocity from deformation to fracture is 256 ms-1 for the alloy with anα+βduplex microstructure including more primaryαphase,while the velocity is 234 ms-1 for the alloy with a duplex microstructure including less primaryα phase.From the impact fracture morphologies,smooth and smeared surfaces and ductile dimple areas can be observed.The failure mode of the titanium alloy with both microstructures is adiabatic shear banding.According to the fracture analysis,the ductile fracture area with the dimple area in the alloy with much more primaryαphase were more than that with less primaryαphase.Compared to the duplex microstructure with less primaryα phase,Ti-5553 alloy with more primaryαphase exhibited a better capability to resist an adiabatic shear damage. 展开更多
关键词 Ti-5Al-5Mo-5V-3Cr-IFe Taylor impact test dynamic fracture behavior adiabatic shearband
下载PDF
Dynamic Fracture of a Semi-Crystalline Bio-Based Polymer Pipe: Effect of Temperature
14
作者 Jean Benoit Kopp Jeremie Girardot 《Journal of Minerals and Materials Characterization and Engineering》 2021年第3期227-244,共18页
The influence of temperature on the resistance to rapid crack propagation of a semi-crystalline bio-based polymer was studied. The experimental results described in this study allow to initiate a first discussion on t... The influence of temperature on the resistance to rapid crack propagation of a semi-crystalline bio-based polymer was studied. The experimental results described in this study allow to initiate a first discussion on the role of viscosity and its link with the fracture behaviour and a heterogeneous microstructure such as the semi-crysalline polymer. Dynamic fracture tests on pipes were carried out. It would appear that a temperature decrease of approximately 40℃ relative to ambient has no significant influence on the average crack propagation velocity (≈0.6<em>c<sub>R</sub></em><sub>)</sub>, fracture energy and surface roughness. On the contrary, crack propagation paths seem to vary with temperature. The difference in fracture behaviour between the amorphous and crystalline phase varies significantly as a function of temperature. The difference between the initiation resistance and the rapid propagation also varies. This difference seems to be significantly reduced by lowering the temperature. The mechanisms of cavitation damage and plastic flow are increasingly limited by the decrease in temperature (and therefore in macromolecular mobility). Crack propagation in the pipe is more extensive and therefore more critical. This is emphasised in particular by the probability of the material to be macro-branched as the temperature decreases. 展开更多
关键词 Dynamic fracture Rapid Crack Propagation Semi-Crystalline PIPE FRACTOGRAPHY
下载PDF
Quasimolecular Dynamic Simulation for Bending Fracture of Laminar Composite Materials
15
作者 Youngsuk Kim and Youngmoon Lee Department of Mechanical Engineering, Kyungpook National University, Taegu, South Korea Dongyoul Choi and Chanil Kim Graduate School, Kyungpook National University, Taegu, South Korea 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2001年第5期547-552,共6页
Recently, quasimolecular dynamics has been successfully used to simulate the deformation characteristics of actual size solid materials. In quasimolecular dynamics, which is an attempt to bridge the gap between atomis... Recently, quasimolecular dynamics has been successfully used to simulate the deformation characteristics of actual size solid materials. In quasimolecular dynamics, which is an attempt to bridge the gap between atomistic and continuum simulations, molecules are aggregated into large units, called quasimolecules, to evaluate large scale material behavior. In this paper, a 2-dimensional numerical simulation using quasimolecular dynamics was performed to investigate laminar composite material fractures and crack propagation behavior in the uniform bending of laminar composite materials. It was verified that under bending deformation laminar composite materials deform quite differently from homogeneous 展开更多
关键词 Quasimolecular Dynamic Simulation for Bending fracture of Laminar Composite Materials SIMULATION
下载PDF
Perforation studies of concrete panel under high velocity projectile impact based on an improved dynamic constitutive model
16
作者 Fei Zhou Hao Wu Yuehua Cheng 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第9期64-82,共19页
The finite-depth concrete panels have been widely applied in the protective structures,and its impact resistance and dynamic fracture failures,especially the scabbing/perforation limits,under high velocity projectile ... The finite-depth concrete panels have been widely applied in the protective structures,and its impact resistance and dynamic fracture failures,especially the scabbing/perforation limits,under high velocity projectile impact,are mainly concerned by protective engineers,which are numerically studied based on an improved dynamic concrete model in this study.Firstly,based on the framework of the KCC(Karagozian&Case concrete)model,a dynamic concrete model is proposed which considers an independent tensile damage model and a continued transition between dynamic tensile and compressive properties.Secondly,the strength surface,equation of state and damage parameters of the proposed model are comprehensively calibrated by a triaxial compressive test with high confinement pressure,the rationality of which is further verified based on the single element tests,e.g.,uniaxial and triaxial compression as well as uniaxial,biaxial and triaxial tension.Thirdly,a series of projectile high velocity impact tests on thin and thick concrete panels are simulated,which indicates that the projectile residual velocity and dynamic fracture failures are reproduced satisfactorily,while the KCC model underestimates both the spalling and scabbing dimensions severely.Finally,based on the validated concrete model and finite element analyses approach,the validations of the existing five empirical formulae are evaluated,in terms of the depth of penetration(DOP)and scabbing/perforation limits of concrete panel.Both the Army corps of engineers(ACE)and modified National Defense Research Committee(NDRC)formulae are recommended in the design of the protective structure to avoid scabbing failure. 展开更多
关键词 Concrete panel PROJECTILE Dynamic fracture Scabbing limit Constitutive model
下载PDF
A novel fractal-statistical scaling model of rocks considering strain rate
17
作者 Changtai Zhou Heping Xie +2 位作者 Zhihe Wang Tao Zhou Jianbo Zhu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第11期2831-2841,共11页
The scaling-dependent behaviors of rocks are significant to the stability and safe operation of the structures built in or on rock masses for practical engineering.Currently,many size effect models are employed to con... The scaling-dependent behaviors of rocks are significant to the stability and safe operation of the structures built in or on rock masses for practical engineering.Currently,many size effect models are employed to connect laboratory measurements at small scales and engineering applications at large scales.However,limited works consider the strain rate effect.In this study,an fractal-statistical scaling model incorporating strain rate is proposed based on a weakest-link approach,fractal theory and dynamic fracture mechanics.The proposed scaling model consists of 8 model parameters with physical meaning,i.e.rate-dependent parameter,intrinsic material parameter,dynamic strain rate,quasi-static strain rate,quasi-static fracture toughness,micro-crack size,micro-crack intensity and fractal dimension,enabling the proposed scaling model to model the scaling behaviors under different external conditions.Theoretical predictions are consistent with experimental data on red sandstone,proving the reliability and effectiveness of the proposed scaling model.Thus,the scaling behaviors of rocks under dynamic loading conditions can be captured by the proposed fractal-statistical scaling model.The sensitivity analysis indicates that the nominal strength difference becomes more obvious with a higher strain rate,larger fractal dimension,smaller micro-crack size or lower micro-crack intensity.Therefore,the proposed scaling model has the potential to capture the scaling behaviors considering the thermal effect,weathering effect,anisotropic characteristic etc.,as the proposed scaling model incorporated model parameters with physical meaning.The findings of this study are of fundamental importance to understand the scaling behaviors of rock under dynamic loading condition,and thus would facilitate the appropriate design of rock engineering. 展开更多
关键词 Size effect Strain rate Uniaxial compressive strength(UCS) Dynamic fracture mechanics
下载PDF
Experimental and numerical investigation on the dynamic shear failure mechanism of sandstone using short beam compression specimen
18
作者 Zelin Yan Feng Dai Yi Liu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第8期1911-1923,共13页
In this study,a novel testing method is proposed to characterize the dynamic shear property and failure mechanism of rocks by introducing the short beam compression(SBC)specimen into the split Hopkinson pressure bar(S... In this study,a novel testing method is proposed to characterize the dynamic shear property and failure mechanism of rocks by introducing the short beam compression(SBC)specimen into the split Hopkinson pressure bar(SHPB)system.Firstly,the stress distribution of SBC specimen is comprehensively analyzed by finite element method(FEM),and the results show that the optimal notch separation ratio of SBC specimen is C/H?0.2 to achieve successful dynamic simple-shear tests.Then,dynamic shear tests are conducted on sandstone using the SBC-SHPB method.Via careful pulse shaping technique,the dynamic force balance is guaranteed for SBC specimens,and the testing results show that the dynamic shear strength of sandstone is significantly rate-dependent.Combining the results of dynamic compression and tension tests,the failure envelopes of sandstone under different loading rates are obtained in the principle stress plane.It is found that the failure envelope of sandstone constantly expands outwards with increasing loading rate.Moreover,the energy partition of SBC specimen is quantified by virtue of high-speed digital image correlation(DIC)technique.The results show that the kinetic energy portion is non-negligible,and the shear fracture energy increases with increasing loading rate.In addition,the microscopic shear cracking mechanism of SBC specimen is analyzed by the thin section observation:the intra-granular(TG)fracture of minerals dominates the dynamic shear failure of sandstone,and the portion of TG fracture increases with increasing loading rate.This study provides a convenient and reliable method to investigate the dynamic shear property and failure mechanism of rocks. 展开更多
关键词 Dynamic shear property Short beam compression(SBC) Dynamic fracture energy Micro-cracking mechanism
下载PDF
Dislocation distribution model of mode Ⅲ propagation crack
19
作者 王云涛 吕念春 +1 位作者 王超迎 程靳 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2010年第2期215-218,共4页
Dislocation distribution functions of the edges of mode Ⅲ propagation crack subjected to three types of loads were studied by the methods of the theory of complex variable functions,by which,the problems researched w... Dislocation distribution functions of the edges of mode Ⅲ propagation crack subjected to three types of loads were studied by the methods of the theory of complex variable functions,by which,the problems researched were facilely transformed into Riemann-Hilbert problems and Keldysh-Sedov mixed boundary value problems. Analytical solutions of stresses,displacement and dynamic stress intensity factor were obtained by the measures of the theory of self-similar functions and corresponding differential and integral operation. In terms of the relationship between dislocation distribution functions and displacements,analytical solutions of dislocation distribution functions were obttained,and variational rules of dislocation distribution functions were depicted. 展开更多
关键词 mode propagation crack fracture dynamics self-similar functions dislocation distribution functions analytical solutions
下载PDF
Improvement of Toughness of Ultrahigh Strength Steel Aermet 100 被引量:15
20
作者 Liuding WANG Laizhu JIANG +2 位作者 Ming ZHU Xiao LIU Wangmin ZHOU 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2005年第5期710-714,共5页
The influence of double aging on the microstructure and mechanical properties of ultrahigh strength steel Aermet 100 was analyzed. Under the double aging, there is no apparent decrease in the strength of steel. Howeve... The influence of double aging on the microstructure and mechanical properties of ultrahigh strength steel Aermet 100 was analyzed. Under the double aging, there is no apparent decrease in the strength of steel. However, the impact fatigue life can be prolonged by 35.5% and dynamic fracture toughness be raised by 22.6% respectively, as compared with the normal aging. Based on the observation of microscopic structure, the physical mechanism of the prolongation of impact fatigue life and the enhancement of stability of the reverted austenite, AR, is analyzed further. The results show that this new technique is a breakthrough of combination optimization between strength and toughness for Aermet 100 steel. In the light of the current understanding on this subject, the volume fracture of soften and tough AR formed in process of heat preservation at higher temperature of double aging increases drastically. Moreover, during the treatment of lower temperature of double aging, the carbon separating from the martensitic ferrite will diffuse into AR, resulting that the martensitic brittleness decreases and the stability of AR increases. 展开更多
关键词 Ultrahigh strength steel Aging treatment Impact fatigue life Dynamic fracture toughness
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部