Understanding unsaturated flow behaviors in fractured rocks is essential for various applications.A fundamental process in this regard is flow splitting at fracture intersections.However,the impact of geometrical prop...Understanding unsaturated flow behaviors in fractured rocks is essential for various applications.A fundamental process in this regard is flow splitting at fracture intersections.However,the impact of geometrical properties of fracture intersections on flow splitting is still unclear.This work investigates the combined influence of geometry(intersection angle,fracture apertures,and inclination angle),liquid droplet length,inertia,and dynamic wetting properties on liquid splitting dynamics at fracture intersections.A theoretical model of liquid splitting is developed,considering the factors mentioned above,and numerically solved to predict the flow splitting behavior.The model is validated against carefullycontrolled visualized experiments.Our results reveal two distinct splitting behaviors,separated by a critical droplet length.These behaviors shift from a monotonic to a non-monotonic trend with decreasing inclination angle.A comprehensive analysis further clarifies the impacts of the key factors on the splitting ratio,which is defined as the percentage of liquid volume entering the branch fracture.The splitting ratio decreases with increasing inclination angle,indicating a decrease in the gravitational effect on the branch fracture,which is directly proportional to the intersection angle.A non-monotonic relationship exists between the splitting ratio and the aperture ratio of the branch fracture to the main fracture.The results show that as the intersection angle decreases,the splitting ratio increases.Additionally,the influence of dynamic contact angles decreases with increasing intersection angle.These findings enhance our understanding of the impact of geometry on flow dynamics at fracture intersections.The proposed model provides a foundation for simulating and predicting unsaturated flow in complex fractured networks.展开更多
In open pit mining,uncontrolled block instabilities have serious social,economic and regulatory consequences,such as casualties,disruption of operation and increased regulation difficulties.For this reason,bench face ...In open pit mining,uncontrolled block instabilities have serious social,economic and regulatory consequences,such as casualties,disruption of operation and increased regulation difficulties.For this reason,bench face angle,as one of the controlling parameters associated with block instabilities,should be carefully designed for sustainable mining.This study introduces a discrete fracture network(DFN)-based probabilistic block theory approach for the fast design of the bench face angle.A major advantage is the explicit incorporation of discontinuity size and spatial distribution in the procedure of key blocks testing.The proposed approach was applied to a granite mine in China.First,DFN models were generated from a multi-step modeling procedure to simulate the complex structural characteristics of pit slopes.Then,a modified key blocks searching method was applied to the slope faces modeled,and a cumulative probability of failure was obtained for each sector.Finally,a bench face angle was determined commensurate with an acceptable risk level of stability.The simulation results have shown that the number of hazardous traces exposed on the slope face can be significantly reduced when the suggested bench face angle is adopted,indicating an extremely low risk of uncontrolled block instabilities.展开更多
To study the damage and failure of shale with different fracture inclination angles under uniaxial compression loading,in this work,RFPA2D-Thermal,a two-dimensional real failure process analysis software,was used for ...To study the damage and failure of shale with different fracture inclination angles under uniaxial compression loading,in this work,RFPA2D-Thermal,a two-dimensional real failure process analysis software,was used for numerical simulation.Numerical simulation results show that quartz in shale mainly affects the tensile and compressive strength of shale by increasing rock brittleness.The coupling of temperature and pressure will cause lateral and volume destruction of shale,which enables the shale body to be more easily broken.Fracture inclination is the key factor affecting shale damage patterns.The failure mode of shale with low-and high-angle fractures is mainly shear failure,and the compressive strength does not vary with crack inclination.The damage mode of obliquely intersecting fractured shale is slip damage along the fracture face,the compressive strength decreases and then increases with the fracture inclination,and a minimum value exists.The acoustic emission simulation results of the damage process effectively reflect the accumulated internal damage and macroscopic crack appearance until fracture instability when the prefabricated fractured shale is subjected to uniaxial compressive loading.The crack inclinations of 0°and 120℃ corresponds to the most complex"N"shape damage mode.The crack inclinations of 30°and 60°,and the damage mode is an inverted"λ"shape.展开更多
A computation framework for brittle fracture which incorporates weakest link statistics and a microme- chanics model reflecting reflecting local damage of the material is described.The Weibull stress W emerges as a ...A computation framework for brittle fracture which incorporates weakest link statistics and a microme- chanics model reflecting reflecting local damage of the material is described.The Weibull stress W emerges as a probabilistic fracture parameter to define the condition leading material failure. Unstable crack propa- gation occurs at a critical value of W which may be attained paior to or following some amount of duc- tile crack extension. A realistic model of ductile crack growth using the computation cell methodology is used to define the evolution of near tip stress fields during crack extension. An application of proposed framework to predict the measured geometry and ductile tearing effects on the statistical distributio of fracture toughness for the pipe line steel welded joint is described.展开更多
BACKGROUND Subchondral fatigue fracture of the femoral head(SFFFH)mainly occurs in young military recruits and might be confused with osteonecrosis of the femoral head.However,less research focuses on the risk factor ...BACKGROUND Subchondral fatigue fracture of the femoral head(SFFFH)mainly occurs in young military recruits and might be confused with osteonecrosis of the femoral head.However,less research focuses on the risk factor for SFFFH.AIM To evaluate the intrinsic risk factors for SFFFH in young military recruits.METHODS X-ray and magnetic resonance imaging data were used for analysis.Acetabular anteversion of the superior acetabulum,acetabular anteversion of the center of the acetabulum(AVcen),anterior acetabular sector angle(AASA),posterior acetabular sector angle,superior acetabular sector angle,neck-shaft angle(NSA),inferior iliac angle(IIA),and ischiopubic angle were calculated.Then,logistic regression,receiver operating characteristic curve analysis,and independent samples t-test were performed to identify the risk factors for SFFFH.RESULTS Based on the results of logistic regression,age[odds ratio(OR):1.33;95%confidence interval(95%CI):1.12-1.65;P=0.0031]and treatment timing(OR:0.86;95%CI:0.75-0.96;P=0.015)could be considered as the indicators for SFFFH.AVcen(P=0.0334),AASA(P=0.0002),NSA(P=0.0007),and IIA(P=0.0316)were considered to have statistical significance.Further,AVcen(OR:1.41;95%CI:1.04-1.95)and AASA(OR:1.44;95%CI:1.21-1.77),especially AASA(area under curve:66.6%),should be paid much more attention due to the higher OR than other indicators.CONCLUSION We have for the first time unveiled that AASA and age could be key risk factors for SFFFH,which further verifies that deficient anterior coverage of the acetabulum might be the main cause of SFFFH.展开更多
Fracture porosity is one of the key parameters for characterizing fractured reservoirs.However,fracture porosity calculation is difficult with conventional logging data due to severe anisotropy of the reservoirs.To de...Fracture porosity is one of the key parameters for characterizing fractured reservoirs.However,fracture porosity calculation is difficult with conventional logging data due to severe anisotropy of the reservoirs.To deal with the problem,the equivalent macroscopic anisotropic formation model based on dual laterolog(DLL)data is adopted to cyclically assign such parameters as bedrock resistivity(RB),fluid resistivity in fractures(RFL),fracture dip angle(FDA)and fracture thickness as well as fracture spacing,and to produce massive data for formation modeling.A large number of training data obtained through three dimensional finite element forward modeling and the functional relationship between DLL responses and fracture parameters that are trained and summarized by deep neural network,are combined to establish a new fast forward model for calculating DLL responses in fractured formations.A new fracture porosity inversion model for fractured reservoirs based on gradient optimization inversion algorithm combined with multi-initial inversion strategy is then proposed.While running the model,formation is divided into eight intervals according to bedrock resistivity and fracture dip angle from 0°to 90°is divided every 0.5°to improve the operation speed and efficiency.The results of numerical verification show that when bedrock resistivity is greater than 1000Ωm,the mean absolute error(MAE)of fracture porosity inversion is 0.001658%for horizontal fractures,0.00413%for intermediate fractures and 0.0027%for quasi-vertical fractures.When bedrock resistivity is between 100Ωm and 1000Ωm,MAE of fracture porosity inversion is 0.003%for horizontal fractures,0.0034%for intermediate fractures and 0.00348%for quasi-vertical fractures.Fracture parameters determined by the fracture porosity inversion model with actual data are in good agreement with the results of micro resistivity imaging logging.展开更多
To evaluate the clinical significance of Baumann’s angle in the closed reduction and percutaneous pinning fixation for supracondylar fractures of the humerus in children.Methods There were 97 children (male 59,female...To evaluate the clinical significance of Baumann’s angle in the closed reduction and percutaneous pinning fixation for supracondylar fractures of the humerus in children.Methods There were 97 children (male 59,female 38,mean age of 6.8 years) with displaced supracondylar fracrtures of the humerus were treated in this hospital.Under fluoroscopy guidance,three-dimensional displacement of fractures was corrected by closed reduction.The percutaneous Kirschner wire pinning was applied only if the radiographs demonstrated that Baumann’s angle was less than 4 degree compared to that on the normal side.All of them were followed up for 34.5 months (range,12 to 48 months).Results There was one case with ulnar nerve palsy associated with the pinning.There were no Volkmann’s contracture in this group.X-ray examinations revealed an average 73.7 degrees of Baumann angle on the injured and 72.8 on uninjured side.An average 7.6 degrees of the carrying angle on the injured and 9.7 on uninjured side were also demonstrated by radiography.Five patients developed slight cubitus varus deformity.The result according to Flynn criteria were excellent in 85 patients (87.6%),good in 12 patients (12.4%).Conclusion The satisfactory results can be gained in children with displaced supracondylar fractures of the humerus by restoration of the normal Baumann angle and percutaneous pinning fixation.18 refs,2 figs.展开更多
基金support from the National Natural Science Foundation of China (Grant No.52079062 and 42077177)the Natural Science Foundation of Jiangxi Province (Grant No.20232ACG01003)is acknowledged.
文摘Understanding unsaturated flow behaviors in fractured rocks is essential for various applications.A fundamental process in this regard is flow splitting at fracture intersections.However,the impact of geometrical properties of fracture intersections on flow splitting is still unclear.This work investigates the combined influence of geometry(intersection angle,fracture apertures,and inclination angle),liquid droplet length,inertia,and dynamic wetting properties on liquid splitting dynamics at fracture intersections.A theoretical model of liquid splitting is developed,considering the factors mentioned above,and numerically solved to predict the flow splitting behavior.The model is validated against carefullycontrolled visualized experiments.Our results reveal two distinct splitting behaviors,separated by a critical droplet length.These behaviors shift from a monotonic to a non-monotonic trend with decreasing inclination angle.A comprehensive analysis further clarifies the impacts of the key factors on the splitting ratio,which is defined as the percentage of liquid volume entering the branch fracture.The splitting ratio decreases with increasing inclination angle,indicating a decrease in the gravitational effect on the branch fracture,which is directly proportional to the intersection angle.A non-monotonic relationship exists between the splitting ratio and the aperture ratio of the branch fracture to the main fracture.The results show that as the intersection angle decreases,the splitting ratio increases.Additionally,the influence of dynamic contact angles decreases with increasing intersection angle.These findings enhance our understanding of the impact of geometry on flow dynamics at fracture intersections.The proposed model provides a foundation for simulating and predicting unsaturated flow in complex fractured networks.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.42102313 and 52104125)the Fundamental Research Funds for the Central Universities(Grant No.B240201094).
文摘In open pit mining,uncontrolled block instabilities have serious social,economic and regulatory consequences,such as casualties,disruption of operation and increased regulation difficulties.For this reason,bench face angle,as one of the controlling parameters associated with block instabilities,should be carefully designed for sustainable mining.This study introduces a discrete fracture network(DFN)-based probabilistic block theory approach for the fast design of the bench face angle.A major advantage is the explicit incorporation of discontinuity size and spatial distribution in the procedure of key blocks testing.The proposed approach was applied to a granite mine in China.First,DFN models were generated from a multi-step modeling procedure to simulate the complex structural characteristics of pit slopes.Then,a modified key blocks searching method was applied to the slope faces modeled,and a cumulative probability of failure was obtained for each sector.Finally,a bench face angle was determined commensurate with an acceptable risk level of stability.The simulation results have shown that the number of hazardous traces exposed on the slope face can be significantly reduced when the suggested bench face angle is adopted,indicating an extremely low risk of uncontrolled block instabilities.
基金Funded by the Guizhou Province Outstanding Young Scientifc and Technological Talents Training Plan(No.Qian Kehe Platform Talents-YQK[2023]012)National Natural Science Foundation of China(Nos.52104080,52264004)+4 种基金Guizhou Science and Technology Fund(No.[2021]401)Guizhou Science and Technology Fund(Qiankehe Support[2023]136)Guizhou Science and Technology Fund(Qiankehe Support[2022]227)Guizhou Science and Technology Fund(Qiankehe Strategic Search for Minerals[2022]ZD005)Natural Science Special(Special Post)Scientifc Research Fund Project of Guizhou University(No.[2021]51)。
文摘To study the damage and failure of shale with different fracture inclination angles under uniaxial compression loading,in this work,RFPA2D-Thermal,a two-dimensional real failure process analysis software,was used for numerical simulation.Numerical simulation results show that quartz in shale mainly affects the tensile and compressive strength of shale by increasing rock brittleness.The coupling of temperature and pressure will cause lateral and volume destruction of shale,which enables the shale body to be more easily broken.Fracture inclination is the key factor affecting shale damage patterns.The failure mode of shale with low-and high-angle fractures is mainly shear failure,and the compressive strength does not vary with crack inclination.The damage mode of obliquely intersecting fractured shale is slip damage along the fracture face,the compressive strength decreases and then increases with the fracture inclination,and a minimum value exists.The acoustic emission simulation results of the damage process effectively reflect the accumulated internal damage and macroscopic crack appearance until fracture instability when the prefabricated fractured shale is subjected to uniaxial compressive loading.The crack inclinations of 0°and 120℃ corresponds to the most complex"N"shape damage mode.The crack inclinations of 30°and 60°,and the damage mode is an inverted"λ"shape.
文摘A computation framework for brittle fracture which incorporates weakest link statistics and a microme- chanics model reflecting reflecting local damage of the material is described.The Weibull stress W emerges as a probabilistic fracture parameter to define the condition leading material failure. Unstable crack propa- gation occurs at a critical value of W which may be attained paior to or following some amount of duc- tile crack extension. A realistic model of ductile crack growth using the computation cell methodology is used to define the evolution of near tip stress fields during crack extension. An application of proposed framework to predict the measured geometry and ductile tearing effects on the statistical distributio of fracture toughness for the pipe line steel welded joint is described.
文摘BACKGROUND Subchondral fatigue fracture of the femoral head(SFFFH)mainly occurs in young military recruits and might be confused with osteonecrosis of the femoral head.However,less research focuses on the risk factor for SFFFH.AIM To evaluate the intrinsic risk factors for SFFFH in young military recruits.METHODS X-ray and magnetic resonance imaging data were used for analysis.Acetabular anteversion of the superior acetabulum,acetabular anteversion of the center of the acetabulum(AVcen),anterior acetabular sector angle(AASA),posterior acetabular sector angle,superior acetabular sector angle,neck-shaft angle(NSA),inferior iliac angle(IIA),and ischiopubic angle were calculated.Then,logistic regression,receiver operating characteristic curve analysis,and independent samples t-test were performed to identify the risk factors for SFFFH.RESULTS Based on the results of logistic regression,age[odds ratio(OR):1.33;95%confidence interval(95%CI):1.12-1.65;P=0.0031]and treatment timing(OR:0.86;95%CI:0.75-0.96;P=0.015)could be considered as the indicators for SFFFH.AVcen(P=0.0334),AASA(P=0.0002),NSA(P=0.0007),and IIA(P=0.0316)were considered to have statistical significance.Further,AVcen(OR:1.41;95%CI:1.04-1.95)and AASA(OR:1.44;95%CI:1.21-1.77),especially AASA(area under curve:66.6%),should be paid much more attention due to the higher OR than other indicators.CONCLUSION We have for the first time unveiled that AASA and age could be key risk factors for SFFFH,which further verifies that deficient anterior coverage of the acetabulum might be the main cause of SFFFH.
基金This work was financially supported by the National Natural Science Foundation of China(NSFC)Basic Research Program on Deep Petroleum Resource Accumulation and Key Engineering Technologies(Grant No.U19B6003-04-03-03)State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Effective Development Projects(No.20-YYGZ-KF-GC-11)+1 种基金the Strategic Priority Research program of the Chinese Academy of Sciences(Grant No.XDA14010101)the National Science and Technology Major Project(Grant No.2017ZX05005005-005 and 2016ZX05014002-001).
文摘Fracture porosity is one of the key parameters for characterizing fractured reservoirs.However,fracture porosity calculation is difficult with conventional logging data due to severe anisotropy of the reservoirs.To deal with the problem,the equivalent macroscopic anisotropic formation model based on dual laterolog(DLL)data is adopted to cyclically assign such parameters as bedrock resistivity(RB),fluid resistivity in fractures(RFL),fracture dip angle(FDA)and fracture thickness as well as fracture spacing,and to produce massive data for formation modeling.A large number of training data obtained through three dimensional finite element forward modeling and the functional relationship between DLL responses and fracture parameters that are trained and summarized by deep neural network,are combined to establish a new fast forward model for calculating DLL responses in fractured formations.A new fracture porosity inversion model for fractured reservoirs based on gradient optimization inversion algorithm combined with multi-initial inversion strategy is then proposed.While running the model,formation is divided into eight intervals according to bedrock resistivity and fracture dip angle from 0°to 90°is divided every 0.5°to improve the operation speed and efficiency.The results of numerical verification show that when bedrock resistivity is greater than 1000Ωm,the mean absolute error(MAE)of fracture porosity inversion is 0.001658%for horizontal fractures,0.00413%for intermediate fractures and 0.0027%for quasi-vertical fractures.When bedrock resistivity is between 100Ωm and 1000Ωm,MAE of fracture porosity inversion is 0.003%for horizontal fractures,0.0034%for intermediate fractures and 0.00348%for quasi-vertical fractures.Fracture parameters determined by the fracture porosity inversion model with actual data are in good agreement with the results of micro resistivity imaging logging.
文摘To evaluate the clinical significance of Baumann’s angle in the closed reduction and percutaneous pinning fixation for supracondylar fractures of the humerus in children.Methods There were 97 children (male 59,female 38,mean age of 6.8 years) with displaced supracondylar fracrtures of the humerus were treated in this hospital.Under fluoroscopy guidance,three-dimensional displacement of fractures was corrected by closed reduction.The percutaneous Kirschner wire pinning was applied only if the radiographs demonstrated that Baumann’s angle was less than 4 degree compared to that on the normal side.All of them were followed up for 34.5 months (range,12 to 48 months).Results There was one case with ulnar nerve palsy associated with the pinning.There were no Volkmann’s contracture in this group.X-ray examinations revealed an average 73.7 degrees of Baumann angle on the injured and 72.8 on uninjured side.An average 7.6 degrees of the carrying angle on the injured and 9.7 on uninjured side were also demonstrated by radiography.Five patients developed slight cubitus varus deformity.The result according to Flynn criteria were excellent in 85 patients (87.6%),good in 12 patients (12.4%).Conclusion The satisfactory results can be gained in children with displaced supracondylar fractures of the humerus by restoration of the normal Baumann angle and percutaneous pinning fixation.18 refs,2 figs.