The problem of water coning into the Tarim fractured sandstone gas reservoirs becomes one of the major concerns in terms of productivity, increased operating costs and environmental effects. Water coning is a phenomen...The problem of water coning into the Tarim fractured sandstone gas reservoirs becomes one of the major concerns in terms of productivity, increased operating costs and environmental effects. Water coning is a phenomenon caused by the imbalance between gravity and viscous forces around the completion interval. There are several controllable and uncontrollable parameters influencing this problem. In order to simulate the key parameters affecting the water coning phenomenon, a model was developed to represent a single well with an underlying aquifer using the fractured sandstone gas reservoir data of the A-Well in Dina gas fields.The parametric study was performed by varying six properties individually over a representative range. The results show that matrix permeability, well penetration(especially fracture permeability), vertical-to-horizontal permeability ratio, aquifer size and gas production rate have considerable effect on water coning in the fractured gas reservoirs. Thus, investigation of the effective parameters is necessary to understand the mechanism of water coning phenomenon. Simulation of the problem helps to optimize the conditions in which the breakthrough of water coning is delayed.展开更多
In the fractured water drive reservoirs of China, because of the complex geological conditions, almost all the active water invasions appear to be water breakthrough along fractures, especially along macrofraetures. T...In the fractured water drive reservoirs of China, because of the complex geological conditions, almost all the active water invasions appear to be water breakthrough along fractures, especially along macrofraetures. These seal the path of gas flow, thus the remaining gas in the pores mixes into water, and leads to gas-water interactive distribution in the fractured gas reservoir. These complicated fraetured systems usually generate some abnormal flowing phenomena such as the crestal well produces water while the downdip well in the same gas reservoir produces gas, or the same gas well produces water intermittently. It is very difficult to explain these phenomena using existing fracture models because of their simple handling macrofractures without considering nonlinear flowing in the macrofractures and the low permeability matrix. Therefore, a nonlinear combined-flowing multimedia simulation model was successfully developed in this paper by introducing the equations of macrofractures and considering nonlinear flow in the macrofractures and the matrix. This model was then applied to actual fractured bottom water gas fields. Sensitivity studies of gas produetion by water drainage in fractured gas reservoirs were completed and the effect of different water drainage intensity and ways on actual gas production using this model were calculated. This model has been extensively used to predict the production performance in various fractured gas fields and proven to be reliable.展开更多
基金Project(50150503-12)supported by National Science and Technology Major Program of the Ministry of Science and Technology of ChinaProject(2010E-2103)supported by Research on Key Technology in Tarim Oilfield Exploration and Development,China
文摘The problem of water coning into the Tarim fractured sandstone gas reservoirs becomes one of the major concerns in terms of productivity, increased operating costs and environmental effects. Water coning is a phenomenon caused by the imbalance between gravity and viscous forces around the completion interval. There are several controllable and uncontrollable parameters influencing this problem. In order to simulate the key parameters affecting the water coning phenomenon, a model was developed to represent a single well with an underlying aquifer using the fractured sandstone gas reservoir data of the A-Well in Dina gas fields.The parametric study was performed by varying six properties individually over a representative range. The results show that matrix permeability, well penetration(especially fracture permeability), vertical-to-horizontal permeability ratio, aquifer size and gas production rate have considerable effect on water coning in the fractured gas reservoirs. Thus, investigation of the effective parameters is necessary to understand the mechanism of water coning phenomenon. Simulation of the problem helps to optimize the conditions in which the breakthrough of water coning is delayed.
基金Project supported by the Teaching and Research Award Programfor Outstanding Young Teachers for Higher Educa-tion Institutions of Ministry of Education of China and the Fund of Ph.D.Student Supervisor of Ministry of Education of China(Grant No :20040615004) .
文摘In the fractured water drive reservoirs of China, because of the complex geological conditions, almost all the active water invasions appear to be water breakthrough along fractures, especially along macrofraetures. These seal the path of gas flow, thus the remaining gas in the pores mixes into water, and leads to gas-water interactive distribution in the fractured gas reservoir. These complicated fraetured systems usually generate some abnormal flowing phenomena such as the crestal well produces water while the downdip well in the same gas reservoir produces gas, or the same gas well produces water intermittently. It is very difficult to explain these phenomena using existing fracture models because of their simple handling macrofractures without considering nonlinear flowing in the macrofractures and the low permeability matrix. Therefore, a nonlinear combined-flowing multimedia simulation model was successfully developed in this paper by introducing the equations of macrofractures and considering nonlinear flow in the macrofractures and the matrix. This model was then applied to actual fractured bottom water gas fields. Sensitivity studies of gas produetion by water drainage in fractured gas reservoirs were completed and the effect of different water drainage intensity and ways on actual gas production using this model were calculated. This model has been extensively used to predict the production performance in various fractured gas fields and proven to be reliable.