Fracture toughness is very important when applying Damage Tolerance Design and Assessment Techniques. The traditional testing approach for obtaining fracture toughness values is costly and time consuming. In order to ...Fracture toughness is very important when applying Damage Tolerance Design and Assessment Techniques. The traditional testing approach for obtaining fracture toughness values is costly and time consuming. In order to estimate the fracture toughness of ductile metals, the fracture mechanics theory, materials plastic deformation theory and materials constructive relationships are employed here. A series of formulae and a theoretical approach are presented to calculate fracture toughness values of different materials in the plane stress and plane strain conditions. Compared with test results, evaluated values have a good agreement.展开更多
This paper performed flexural test and numerical simulation of clay-beams with different water contents to study the tensile fracture of clay soil and the relevant mechanisms.The crack initiation and propagation proce...This paper performed flexural test and numerical simulation of clay-beams with different water contents to study the tensile fracture of clay soil and the relevant mechanisms.The crack initiation and propagation process and the accompanied strain localization behaviors were all clearly observed and analyzed.The exponential cohesive zone model was proposed to simulate the crack interface behavior of the cohesive-frictional materials.The experimental results show that the bending capacity of clay-beams decrease with the water content,while those of the crack mouth opening displacement,crack-tip strain and the strain localization range increase.The numerical predictions successfully reproduce the evolving tensile cracks and the strain localization phenomenon of the clay beams with different fracture ductility,which demonstrates the validity of the proposed cohesive zone model in modelling clay fractures.展开更多
The relationship between Charpy absorbed energy and the fracture toughness by means of the (crack tip opening displacement (CTOD)) method was analyzed based on the Weibull stress criterion. The Charpy absorbed energy ...The relationship between Charpy absorbed energy and the fracture toughness by means of the (crack tip opening displacement (CTOD)) method was analyzed based on the Weibull stress criterion. The Charpy absorbed energy and the fracture toughness were measured for the SN490B steel under the ductile-brittle transition temperature region. For the instrumented Charpy impact test, the curves between the loading point displacement and the load against time were recorded. The critical Weibull stress was taken as a fracture controlled parameter, and it could not be affected by the specimen configuration and the loading pattern based on the local approach. The parameters controlled brittle fracture are obtained from the Charpy absorbed energy results, then the fracture toughness for the compact tension (CT) specimen is predicted. It is found that the results predicted are in good agreement with the experimental. The fracture toughness could be evaluated by the Charpy absorbed energy, because the local approach gives a good description for the brittle fracture even though the Charpy impact specimen or the CT specimen is used for the given material.展开更多
The validity of Local Cubic Law (LCL) is an important issue to study groundwater flow and transport in fractured media. According to laboratory simulaion tests, the average velocity with a lower gradient in a single...The validity of Local Cubic Law (LCL) is an important issue to study groundwater flow and transport in fractured media. According to laboratory simulaion tests, the average velocity with a lower gradient in a single fracture is calculated by the LCL, which is compared with the measured average velocity. Then dye tracer test is designed and completed. The evidence for non-LCL, is drawn from the results of the simulation tests and the dye tracer tests. Then the Reynolds number of groundwater is calculated, the critical value of Re for laminar flow is discussed in a single fracture under different conditions. The motion types for groundwater flow have been discussed.展开更多
文摘Fracture toughness is very important when applying Damage Tolerance Design and Assessment Techniques. The traditional testing approach for obtaining fracture toughness values is costly and time consuming. In order to estimate the fracture toughness of ductile metals, the fracture mechanics theory, materials plastic deformation theory and materials constructive relationships are employed here. A series of formulae and a theoretical approach are presented to calculate fracture toughness values of different materials in the plane stress and plane strain conditions. Compared with test results, evaluated values have a good agreement.
基金sponsored by the National Key Research and Development Program of China(No.2016YFC0800200)the National Basic Research Program of China(No.2014CB047000),and the NSFC(Grant No.51578502).
文摘This paper performed flexural test and numerical simulation of clay-beams with different water contents to study the tensile fracture of clay soil and the relevant mechanisms.The crack initiation and propagation process and the accompanied strain localization behaviors were all clearly observed and analyzed.The exponential cohesive zone model was proposed to simulate the crack interface behavior of the cohesive-frictional materials.The experimental results show that the bending capacity of clay-beams decrease with the water content,while those of the crack mouth opening displacement,crack-tip strain and the strain localization range increase.The numerical predictions successfully reproduce the evolving tensile cracks and the strain localization phenomenon of the clay beams with different fracture ductility,which demonstrates the validity of the proposed cohesive zone model in modelling clay fractures.
基金The work is supported by the National Natural Science Foundation of China under grant No.50275107by Fok Ying Tung Education Foundation under grant No.81405.
文摘The relationship between Charpy absorbed energy and the fracture toughness by means of the (crack tip opening displacement (CTOD)) method was analyzed based on the Weibull stress criterion. The Charpy absorbed energy and the fracture toughness were measured for the SN490B steel under the ductile-brittle transition temperature region. For the instrumented Charpy impact test, the curves between the loading point displacement and the load against time were recorded. The critical Weibull stress was taken as a fracture controlled parameter, and it could not be affected by the specimen configuration and the loading pattern based on the local approach. The parameters controlled brittle fracture are obtained from the Charpy absorbed energy results, then the fracture toughness for the compact tension (CT) specimen is predicted. It is found that the results predicted are in good agreement with the experimental. The fracture toughness could be evaluated by the Charpy absorbed energy, because the local approach gives a good description for the brittle fracture even though the Charpy impact specimen or the CT specimen is used for the given material.
基金Project supported by the National Natural Science Foundation of China (Grant No :40202027) and Fok Ying Tung Ed-ucation Foundation (Grant No :91079)
文摘The validity of Local Cubic Law (LCL) is an important issue to study groundwater flow and transport in fractured media. According to laboratory simulaion tests, the average velocity with a lower gradient in a single fracture is calculated by the LCL, which is compared with the measured average velocity. Then dye tracer test is designed and completed. The evidence for non-LCL, is drawn from the results of the simulation tests and the dye tracer tests. Then the Reynolds number of groundwater is calculated, the critical value of Re for laminar flow is discussed in a single fracture under different conditions. The motion types for groundwater flow have been discussed.