A deep understanding of the geometric impacts of fracture on fracturing fluid flowback efficiency is essential for unconventional oil development. Using nuclear magnetic resonance and 2.5-dimensional matrix-fracture v...A deep understanding of the geometric impacts of fracture on fracturing fluid flowback efficiency is essential for unconventional oil development. Using nuclear magnetic resonance and 2.5-dimensional matrix-fracture visualization microfluidic models, qualitative and quantitative descriptions of the influences of connectivity between primary fracture and secondary fracture on flowback were given from core scale to pore network scale. The flow patterns of oil-gel breaking fluid two-phase flow during flowback under different fracture connectivity were analyzed. We found some counterintuitive results that non-connected secondary fracture (NCSF, not connect with artificial primary fracture and embedded in the matrix) is detrimental to flowbackefficiency. The NCSF accelerates the formation of oil channeling during flowback, resulting in a large amount of fracturing fluid trapped in the matrix, which is not beneficial for flowback. Whereas the connected secondary fracture (CSF, connected with the artificial primary fracture) is conducive to flowback. The walls of CSF become part of primary fracture, which expands the drainage area with low resistance, and delays the formation of the oil flow channel. Thus, CSF increases the high-speed flowback stage duration, thereby enhancing the flowback efficiency. The fracturing fluid flowback efficiency investigated here follows the sequence of the connected secondary fracture model (72%) > the matrix model (66%) > the non-connected secondary fracture model (38%). Our results contribute to hydraulic fracturing design and the prediction of flowback efficiency.展开更多
Prediction of seismic attenuation and dispersion that are inherently sensitive to hydraulic and elastic properties of the medium of interest in the presence of mesoscopic fractures and pores,is of great interest in th...Prediction of seismic attenuation and dispersion that are inherently sensitive to hydraulic and elastic properties of the medium of interest in the presence of mesoscopic fractures and pores,is of great interest in the characterization of fractured formations.This has been very difficult,however,considering that stress interactions between fractures and pores,related to their spatial distributions,tend to play a crucial role on affecting overall dynamic elastic properties that are largely unexplored.We thus choose to quantitatively investigate frequency-dependent P-wave characteristics in fractured porous rocks at the scale of a representative sample using a numerical scale-up procedure via performing finite element modelling.Based on 2-D numerical quasi-static experiments,effects of fracture and fluid properties on energy dissipation in response to wave-induced fluid flow at the mesoscopic scale are quantified via solving Biot's equations of consolidation.We show that numerical results are sensitive to some key characteristics of probed synthetic rocks containing unconnected and connected fractures,demonstrating that connectivity,aperture and inclination of fractures as well as fracture infills exhibit strong impacts on the two manifestations of WIFF mechanisms in the connected scenario,and on resulting total wave attenuation and phase velocity.This,in turn,illustrates the importance of these two WIFF mechanisms in fractured rocks and thus,a deeper understanding of them may eventually allow for a better characterization of fracture systems using seismic methods.Moreover,this presented work combines rock physics predictions with seismic numerical simulations in frequency domain to illustrate the sensitivity of seismic signatures on the monitoring of an idealized geologic CO_(2) sequestration in fractured reservoirs.The simulation demonstrates that these two WIFF mechanisms can strongly modify seismic records and hence,indicating that incorporating the two energy dissipation mechanisms in the geophysical interpretation can potentially improving the monitoring and surveying of fluid variations in fractured formations.展开更多
Streamline simulation is developed to simulate waterflooding in fractured reservoirs. Conventional reservoir simulation methods for fluid flow simulation in large and complex reservoirs are very costly and time consum...Streamline simulation is developed to simulate waterflooding in fractured reservoirs. Conventional reservoir simulation methods for fluid flow simulation in large and complex reservoirs are very costly and time consuming. In streamline method, transport equations are solved on one-dimensional streamlines to reduce the computation time with less memory for simulation. First, pressure equation is solved on an Eulerian grid and streamlines are traced. Defining the "time of flight", saturation equations are mapped and solved on streamlines. Finally, the results are mapped back on Eulerian grid and the process is repeated until the simulation end time. The waterflooding process is considered in a fractured reservoir using the dual porosity model. Afterwards, a computational code is developed to solve the same problem by the IMPES method and the results of streamline simulation are compared to those of the IMPES and a commercial software. Finally, the accuracy and efficiency of streamline simulator for simulation of two-phase flow in fractured reservoirs has been proved.展开更多
To analyze and depict complicated fluid behaviors in fractured porous media with variably permeable matrix,an integrated discrete computational algorithm is proposed based on lattice Boltzmann method(LBM).This paper...To analyze and depict complicated fluid behaviors in fractured porous media with variably permeable matrix,an integrated discrete computational algorithm is proposed based on lattice Boltzmann method(LBM).This paper combines with the external force model and statistical material physics to effectively describe the feature changes while the fluid passes through the fractures within the permeable matrix.As an application example,a two dimensional rock sample is reconstructed using the digital image and characterized with different feature values at each LBM grid to distinguish pores,impermeable and permeable matrix by stating its local physical property.Compared with the conventional LBM,the results demonstrate the advantages of proposed algorithm in modeling fluid flow phenomenon in fractured porous media with variably permeable matrix.展开更多
Despite lots of techniques in improving the heap leaching performance,many constraints on the industrial applications remain.We proposed a correspondingly effective and new idea of introducing forced aeration to impro...Despite lots of techniques in improving the heap leaching performance,many constraints on the industrial applications remain.We proposed a correspondingly effective and new idea of introducing forced aeration to improve the bad permeability and leaching effect of Yangla Copper Mine(YCM)during heap leaching.The dual-media theory was employed to study the impact mechanism of forced aeration on the variations of porous and fractured media during the column leaching experiments.An X-Ray Computed Tomography(CT)set was utilized to perform the pore imaging of the specimens and the fracture morphology of the particles within the columns was analyzed by Scanning Electron Microscope(SEM)as aeration rate(AR)changed.The results show that there exists copious fine particles within the heap of YCM,the particle size distribution of which is not reasonable.The forced aeration can not only promote the development of the porous and fractured structures but effectively break the blocked seepage paths.Then the leaching degree is improved and the seepage performance of the solute within the solution is enhanced.Therefore,the forced aeration is probable of making the leaching performance greatly improved.展开更多
To study the heights of the caved zone and water-conducting fracture zone in backfill mining,the failure mechanism of strata during backfill mining was analyzed,and a method for determining the heights of the two zone...To study the heights of the caved zone and water-conducting fracture zone in backfill mining,the failure mechanism of strata during backfill mining was analyzed,and a method for determining the heights of the two zones was proposed based on key strata theory.The movement and failure regularity of the strata above the backfilling panel were revealed through numerical simulation.Considering the geologic conditions of the CT101 backfilling panel,the height of the fracture zone was determined using the proposed method along with empirical calculation,numerical simulation,and borehole detection.The results of the new calculation method were similar to in situ measurements.The traditional empirical formula,which is based on the equivalent mining height model,resulted in large errors during calculation.The findings indicate the reliability of the new method and demonstrate its significance for creating reference data for related studies.展开更多
A review of the pressure transient analysis of flow in reservoirs having natural fractures,vugs and/or caves is presented to provide an insight into how much knowledge has been acquired about this phenomenon and to hi...A review of the pressure transient analysis of flow in reservoirs having natural fractures,vugs and/or caves is presented to provide an insight into how much knowledge has been acquired about this phenomenon and to highlight the gaps still open for further research.A comparison-based approach is adopted which involved the review of works by several authors and identifying the limiting assumptions,model restrictions and applicability.Pressure transient analysis provides information to aid the identification of important features of reservoirs.It also provides an explanation to complex reservoir pressuredependent variations which have led to improved understanding and optimization of the reservoir dynamics.Pressure transient analysis techniques,however,have limitations as not all its models find application in naturally fractured and vuggy reservoirs as the flow dynamics differ considerably.Pollard’s model presented in 1953 provided the foundation for existing pressure transient analysis in these types of reservoirs,and since then,several authors have modified this basic model and come up with more accurate models to characterize the dynamic pressure behavior in reservoirs with natural fractures,vugs and/or caves,with most having inherent limitations.This paper summarizes what has been done,what knowledge is considered established and the gaps left to be researched on.展开更多
The existence of aligned fractures in fluid-saturated rocks leads to obvious attenuation anisotropy and velocity anisotropy. Attenuation anisotropy analysis can be applied to estimate fracture density and scale, which...The existence of aligned fractures in fluid-saturated rocks leads to obvious attenuation anisotropy and velocity anisotropy. Attenuation anisotropy analysis can be applied to estimate fracture density and scale, which provide important information for reservoir identification. This paper derives P-wave attenuation anisotropy in the ATI media where the symmetry axis is in the arbitrary direction theoretically and modifies the spectral ratio method to measure attenuation anisotropy in the ATI media, thus avoiding a large measurement error when applied to wide azimuth or full azimuth data. Fracture dip and azimuth can be estimated through attenuation anisotropy analysis. For small-scale fractures, fracture scale and fracture density can be determined with enhanced convergence if velocity and attenuation information are both used. We also apply the modified spectralratio method to microseismic field data from an oilfield in East China and extract the fracture dip through attenuation anisotropy analysis. The result agrees with the microseismie monitoring.展开更多
The ability to capture permeability of fractured porous media plays a significant role in several engineering applications, including reservoir, mining, petroleum and geotechnical engineering. In order to solve fluid ...The ability to capture permeability of fractured porous media plays a significant role in several engineering applications, including reservoir, mining, petroleum and geotechnical engineering. In order to solve fluid flow and coupled flow-deformation problems encountered in these engineering applications,both empirical and theoretical models had been proposed in the past few decades. Some of them are simple but still work in certain circumstances; others are complex but also need some modifications to be applicable. Thus, the understanding of state-of-the-art permeability evolution model would help researchers and engineers solve engineering problems through an appropriate approach. This paper summarizes permeability evolution models proposed by earlier and recent researchers with emphasis on their characteristics and limitations.展开更多
Layered structures with upper porous and lower fractured media are widely distributed in the world. An experimen- tal investigation on rainfall infiltration and solute transport in such layered structures can provide ...Layered structures with upper porous and lower fractured media are widely distributed in the world. An experimen- tal investigation on rainfall infiltration and solute transport in such layered structures can provide the necessary foundation for effectively preventing and forecasting water bursting in mines, controlling contamination of mine water, and accomplishing ecological restoration of mining areas. A typical physical model of the layered structures with porous and fractured media was created in this study. Then rainfall infiltration experiments were conducted after salt solution was sprayed on the surface of the layered structure. The volumetric water content and concentration of chlorine ions at different specified positions along the profile of the experiment system were measured in real-time. The experimental results showed that the lower fractured media, with a considerably higher permeability than that of the upper porous media, had significant effects on preventing water infil- tration. Moreover, although the porous media were homogeneous statistically in the whole domain, spatial variations in the features of effluent concentrations with regards to time, or so called breakthrough curves, at various sampling points located at the horizontal plane in the porous media near the porous-fractured interface were observed, indicating the diversity of solute transport at small scales. Furthermore, the breakthrough curves of the outflow at the bottom, located beneath the underlying fractured rock, were able to capture and integrate features of the breakthrough curves of both the upper porous and fractured media, which exhibited multiple peaks, while the peak values were reduced one by one with time.展开更多
Coal was considered rock matrix-fractured media composed of rock matrix and fractures, and the rock matrix-fractured media model for heterogeneous and fractured coal bed was presented. In this model the rock matrix is...Coal was considered rock matrix-fractured media composed of rock matrix and fractures, and the rock matrix-fractured media model for heterogeneous and fractured coal bed was presented. In this model the rock matrix is heterogeneous, and the mechanical parameters such as elastic modulus and strength follow Weibull distribution. Fractures in coal bed were generated with the discrete fracture network method, and the properties of fractures were simulated with Desai element. Then the virtual generating system (VGS) of natural heterogeneous and fractured coal bed was developed in Matlab 6.0. The coupled model of gas flow and deformation process based on the rock matrix-fractured media model method and VGS for heterogeneous and fractured coal bed was presented, and the numerical code was developed in Matlab 6.0. The gas flow process in the heterogeneous and fractured coal bed was simulated in a numerical case. The main conclusions are: 1) The natural heterogeneous and fractured coal bed could be simulated by the rock matrix-fractured media model and VGS; 2) The fractures connected with the well have much more effects on gas flow than those non-connected.展开更多
A proper form of the Rayleigh number, containing the geometric mean of the vertical and horizontal permeabilities was obtained. The critical value for the onset of stable convection was found. The results proved analy...A proper form of the Rayleigh number, containing the geometric mean of the vertical and horizontal permeabilities was obtained. The critical value for the onset of stable convection was found. The results proved analytically and numerically that anisotropy in permeability resists the initiation of hydrothermal convection. The equivalence between homogeneously anisotropic media and multiply fractured media was also investigated. It was confirmed that multiply fractured models are comparable to anisotropic models as long as they have the same averaged horizontal or vertical permeabilities and other physical parameters.展开更多
Fracture systems in nature are complicated. Normally vertical fractures develop in an isotropic background. However, the presence of horizontal fine layering or horizontal fractures in reservoirs makes the vertical fr...Fracture systems in nature are complicated. Normally vertical fractures develop in an isotropic background. However, the presence of horizontal fine layering or horizontal fractures in reservoirs makes the vertical fractures develop in a VTI(a transversely isotropic media with a vertical symmetry axis) background. In this case, reservoirs can be described better by using an orthorhombic medium instead of a traditional HTI(a transversely isotropic media with a horizontal symmetry axis) medium. In this paper, we focus on the fracture prediction study within an orthorhombic medium for oil-bearing reservoirs. Firstly, we simplify the reflection coefficient approximation in an orthorhombic medium. Secondly, the impact of horizontal fracturing on the reflection coefficient approximation is analyzed theoretically. Then based on that approximation, we compare and analyze the relative impact of vertical fracturing, horizontal fracturing and fluid indicative factor on traditional ellipse fitting results and the scaled B attributes. We find that scaled B attributes are more sensitive to vertical fractures, so scaled B attributes are proposed to predict vertical fractures. Finally, a test is developed to predict the fracture development intensity of an oil-bearing reservoir. The fracture development observed in cores is used to validate the study method. The findings of both theoretical analyses and practical application reveal that compared with traditional methods, this new approach has improved the prediction of fracture development intensity in oil-bearing reservoirs.展开更多
The karst cave serves as the primary storage space in carbonate reservoirs.Simultaneously connecting multiple karst caves through hydraulic fracturing is key to the efficient development of carbonate reservoirs.Howeve...The karst cave serves as the primary storage space in carbonate reservoirs.Simultaneously connecting multiple karst caves through hydraulic fracturing is key to the efficient development of carbonate reservoirs.However,there is lack of systematic research on the mechanisms and influencing factors of fracture propagation in car-bonate rocks.This paper established models including karst cave models,single natural fracture-cave models,and multiple natural fracture-cave models based on the discrete lattice method.It thoroughly studied how geological and operational factors affect the fracture propagation and the connectivity of karst caves.The final step involved establishing a prototype well model and optimizing operation parameters.The research indicates that an increase in the Young's modulus and pore pressure of karst cave could facilitate hydraulic fracture connecting with caves.When the pore pressure is lower than that in the matrix,it will generate a repulsive effect on hydraulic fractures.The natural fracture along the hydraulic fracture path significantly facilitates the connection with caves.When the wellbore azimuth is less than 60℃,the fracture's diversion radius is small,and hydraulic fractures primarily connect with karst cave through natural fractures.When the wellbore azimuth exceeds 60℃,the fracture's diversion radius increases.Under the combined action of hydraulic fractures and natural fractures,the stimulated volume of the karst cave noticeably increases.Under the same liquid volume,increasing the injection rate could enhance the cave stimulated volume.Combining the findings from numerical simulation studies resulted in the development of a diagram that depicts the connectivity of karst caves,providing valuable insight for hydraulic fracturing operations in carbonate reservoirs.展开更多
Heterogeneity of permeability in fractured media is a hot research topic in hydrogeology. Numerous approaches have been proposed to characterize heterogeneity in the last several decades. However, little attention has...Heterogeneity of permeability in fractured media is a hot research topic in hydrogeology. Numerous approaches have been proposed to characterize heterogeneity in the last several decades. However, little attention has been paid to correlate permeability heterogeneity with geological information. In the present study, several causes of permeability heterogeneity, that is, lithology, tectonism, and depth, are identified. The unit absorption values (denoted as ω), which are results obtained from the packer test, are employed to represent permeability. The variability of permeability in sandstone-mudstone is so significant that the value of unit absorptions span 3-4 orders of magnitude at any depth with several test sections. By declustering, it has been found that under a similar tectonic history, the means of permeability differ greatly at different formations as a result of different mudrock contents. It has also been found that in the same formation, permeability can be significantly increased as a result of faulting. The well-known phenomenon, the decrease in permeability with depth, is found to be caused by the fractures in the rock mass, and the relationship between permeability and depth can be established in the form of logoω-logd. After subtracting the trend of ω with absolute depth, the mean of the residual value at each relative depth can be well correlated with the distribution of mudstone. The methods proposed in this paper can be utilized to research in similar study areas.展开更多
Prediction of radon flux from the fractured zone of a propagating cave mine is basically associated with uncertainty and complexity. For instance, there is restricted access to these zones for field measure- ments, an...Prediction of radon flux from the fractured zone of a propagating cave mine is basically associated with uncertainty and complexity. For instance, there is restricted access to these zones for field measure- ments, and it is quite difficult to replicate the complex nature of both natural and induced fractures in these zones in laboratory studies. Hence, a technique for predicting radon flux from a fractured rock using a discrete fracture network (DFN) model is developed to address these difficulties. This model quantifies the contribution of fractures to the total radon flux, and estimates the fracture density from a measured radon flux considering the effects of advection, diffusion, as well as radon generation and decay. Radon generation and decay are classified as reaction processes. Therefore, the equation solved is termed as the advection-diffusion-reaction equation (ADRE). Peclet number (Pe), a conventional dimensionless parameter that indicates the ratio of mass transport by advection to diffusion, is used to classify the transport regimes. The results show that the proposed model effectively predicts radon flux from a fractured rock. An increase in fracture density for a rock sample with uniformly distributed radon generation rate can elevate radon flux significantly compared with another rock sample with an equivalent increase in radon generation rate. In addition to Pe, two other independent dimensionless parameters (derived for radon transport through fractures) significantly affect radon dimensionless flux. Findings provide insight into radon transport through fractured rocks and can be used to improve radon control measures for proactive mitigation.展开更多
Accurate estimation of fracture density and orientation is of great significance for seismic characterization of fractured reservoirs.Here,we propose a novel methodology to estimate fracture density and orientation fr...Accurate estimation of fracture density and orientation is of great significance for seismic characterization of fractured reservoirs.Here,we propose a novel methodology to estimate fracture density and orientation from azimuthal elastic impedance(AEI)difference using singular value decomposition(SVD).Based on Hudson's model,we first derive the AEI equation containing fracture density in HTI media,and then obtain basis functions and singular values from the normalized AEI difference utilizing SVD.Analysis shows that the basis function changing with azimuth is related to fracture orientation,fracture density is the linearly weighted sum of singular values,and the first singular value contributes the most to fracture density.Thus,we develop an SVD-based fracture density and orientation inversion approach constrained by smooth prior elastic parameters.Synthetic example shows that fracture density and orientation can be stably estimated,and the correlation coefficient between the true value and the estimated fracture density is above 0.85 even when an S/N ratio of 2.Field data example shows that the estimated fracture orientation is consistent with the interpretation of image log data,and the estimated fracture density reliably indicates fractured gas-bearing reservoir,which could help to guide the exploration and development of fractured reservoirs.展开更多
In order to devoid the hard work and factitious error in selecting charts while analyzing and interpreting hydraulic fracturing fracture parameters, on the basis of the non-Darcy flow factor, this paper put out the no...In order to devoid the hard work and factitious error in selecting charts while analyzing and interpreting hydraulic fracturing fracture parameters, on the basis of the non-Darcy flow factor, this paper put out the non-Darcy flow mathematical model of real gas in the formation and fracture, established the production history automatic matching model to identify fracture parameters, and offered the numerical solutions of those models, which took the variation of fracture conductivity in production process. These results offered a precise and reliable method to understand formation, analyze and evaluate the fracturing treatment quality of gas well.展开更多
In a fractured porous hydrocarbon reservoir,wave velocities and refections depend on frequency and incident angle.A proper description of the frequency dependence of amplitude variations with ofset(AVO)signatures shou...In a fractured porous hydrocarbon reservoir,wave velocities and refections depend on frequency and incident angle.A proper description of the frequency dependence of amplitude variations with ofset(AVO)signatures should allow efects of fracture inflls and attenuation and dispersion of fractured media.The novelty of this study lies in the introduction of an improved approach for the investigation of incident-angle and frequency variations-associated refection responses.The improved AVO modeling method,using a frequency-domain propagator matrix method,is feasible to accurately consider velocity dispersion predicted from frequency-dependent elasticities from a rock physics modeling.And hence,the method is suitable for use in the case of an anisotropic medium with aligned fractures.Additionally,the proposed modeling approach allows the combined contributions of layer thickness,interbedded structure,impedance contrast and interferences to frequency-dependent refection coefcients and,hence,yielding seismograms of a layered model with a dispersive and attenuative reservoir.Our numerical results show bulk modulus of fracture fuid signifcantly afects anisotropic attenuation,hence causing frequencydependent refection abnormalities.These implications indicate the study of amplitude versus angle and frequency(AVAF)variations provides insights for better interpretation of refection anomalies and hydrocarbon identifcation in a layered reservoir with vertical transverse isotropy(VTI)dispersive media.展开更多
基金supported by the National Key Research and Development Program of China(Grant No.2019YFA0708700).
文摘A deep understanding of the geometric impacts of fracture on fracturing fluid flowback efficiency is essential for unconventional oil development. Using nuclear magnetic resonance and 2.5-dimensional matrix-fracture visualization microfluidic models, qualitative and quantitative descriptions of the influences of connectivity between primary fracture and secondary fracture on flowback were given from core scale to pore network scale. The flow patterns of oil-gel breaking fluid two-phase flow during flowback under different fracture connectivity were analyzed. We found some counterintuitive results that non-connected secondary fracture (NCSF, not connect with artificial primary fracture and embedded in the matrix) is detrimental to flowbackefficiency. The NCSF accelerates the formation of oil channeling during flowback, resulting in a large amount of fracturing fluid trapped in the matrix, which is not beneficial for flowback. Whereas the connected secondary fracture (CSF, connected with the artificial primary fracture) is conducive to flowback. The walls of CSF become part of primary fracture, which expands the drainage area with low resistance, and delays the formation of the oil flow channel. Thus, CSF increases the high-speed flowback stage duration, thereby enhancing the flowback efficiency. The fracturing fluid flowback efficiency investigated here follows the sequence of the connected secondary fracture model (72%) > the matrix model (66%) > the non-connected secondary fracture model (38%). Our results contribute to hydraulic fracturing design and the prediction of flowback efficiency.
文摘Prediction of seismic attenuation and dispersion that are inherently sensitive to hydraulic and elastic properties of the medium of interest in the presence of mesoscopic fractures and pores,is of great interest in the characterization of fractured formations.This has been very difficult,however,considering that stress interactions between fractures and pores,related to their spatial distributions,tend to play a crucial role on affecting overall dynamic elastic properties that are largely unexplored.We thus choose to quantitatively investigate frequency-dependent P-wave characteristics in fractured porous rocks at the scale of a representative sample using a numerical scale-up procedure via performing finite element modelling.Based on 2-D numerical quasi-static experiments,effects of fracture and fluid properties on energy dissipation in response to wave-induced fluid flow at the mesoscopic scale are quantified via solving Biot's equations of consolidation.We show that numerical results are sensitive to some key characteristics of probed synthetic rocks containing unconnected and connected fractures,demonstrating that connectivity,aperture and inclination of fractures as well as fracture infills exhibit strong impacts on the two manifestations of WIFF mechanisms in the connected scenario,and on resulting total wave attenuation and phase velocity.This,in turn,illustrates the importance of these two WIFF mechanisms in fractured rocks and thus,a deeper understanding of them may eventually allow for a better characterization of fracture systems using seismic methods.Moreover,this presented work combines rock physics predictions with seismic numerical simulations in frequency domain to illustrate the sensitivity of seismic signatures on the monitoring of an idealized geologic CO_(2) sequestration in fractured reservoirs.The simulation demonstrates that these two WIFF mechanisms can strongly modify seismic records and hence,indicating that incorporating the two energy dissipation mechanisms in the geophysical interpretation can potentially improving the monitoring and surveying of fluid variations in fractured formations.
文摘Streamline simulation is developed to simulate waterflooding in fractured reservoirs. Conventional reservoir simulation methods for fluid flow simulation in large and complex reservoirs are very costly and time consuming. In streamline method, transport equations are solved on one-dimensional streamlines to reduce the computation time with less memory for simulation. First, pressure equation is solved on an Eulerian grid and streamlines are traced. Defining the "time of flight", saturation equations are mapped and solved on streamlines. Finally, the results are mapped back on Eulerian grid and the process is repeated until the simulation end time. The waterflooding process is considered in a fractured reservoir using the dual porosity model. Afterwards, a computational code is developed to solve the same problem by the IMPES method and the results of streamline simulation are compared to those of the IMPES and a commercial software. Finally, the accuracy and efficiency of streamline simulator for simulation of two-phase flow in fractured reservoirs has been proved.
基金supported by the Australian Research Council(ARC DP066620,LP0560932,LX0989423 and DP110103024)
文摘To analyze and depict complicated fluid behaviors in fractured porous media with variably permeable matrix,an integrated discrete computational algorithm is proposed based on lattice Boltzmann method(LBM).This paper combines with the external force model and statistical material physics to effectively describe the feature changes while the fluid passes through the fractures within the permeable matrix.As an application example,a two dimensional rock sample is reconstructed using the digital image and characterized with different feature values at each LBM grid to distinguish pores,impermeable and permeable matrix by stating its local physical property.Compared with the conventional LBM,the results demonstrate the advantages of proposed algorithm in modeling fluid flow phenomenon in fractured porous media with variably permeable matrix.
基金the National Natural Science Foundation of China(No.51374035)the Foundation for the Author of National Excellent Doctoral Dissertation of PR China(No.201351)the Program for New Century Excellent Talents in University of China(No.NCET-13-0669).
文摘Despite lots of techniques in improving the heap leaching performance,many constraints on the industrial applications remain.We proposed a correspondingly effective and new idea of introducing forced aeration to improve the bad permeability and leaching effect of Yangla Copper Mine(YCM)during heap leaching.The dual-media theory was employed to study the impact mechanism of forced aeration on the variations of porous and fractured media during the column leaching experiments.An X-Ray Computed Tomography(CT)set was utilized to perform the pore imaging of the specimens and the fracture morphology of the particles within the columns was analyzed by Scanning Electron Microscope(SEM)as aeration rate(AR)changed.The results show that there exists copious fine particles within the heap of YCM,the particle size distribution of which is not reasonable.The forced aeration can not only promote the development of the porous and fractured structures but effectively break the blocked seepage paths.Then the leaching degree is improved and the seepage performance of the solute within the solution is enhanced.Therefore,the forced aeration is probable of making the leaching performance greatly improved.
基金Supported by the National Key R&D Program(2018YFC0604501).
文摘To study the heights of the caved zone and water-conducting fracture zone in backfill mining,the failure mechanism of strata during backfill mining was analyzed,and a method for determining the heights of the two zones was proposed based on key strata theory.The movement and failure regularity of the strata above the backfilling panel were revealed through numerical simulation.Considering the geologic conditions of the CT101 backfilling panel,the height of the fracture zone was determined using the proposed method along with empirical calculation,numerical simulation,and borehole detection.The results of the new calculation method were similar to in situ measurements.The traditional empirical formula,which is based on the equivalent mining height model,resulted in large errors during calculation.The findings indicate the reliability of the new method and demonstrate its significance for creating reference data for related studies.
基金the financial support received from the College of Petroleum Engineering and Geosciences at KFUPM through the project SF20006 toward the completion of this work。
文摘A review of the pressure transient analysis of flow in reservoirs having natural fractures,vugs and/or caves is presented to provide an insight into how much knowledge has been acquired about this phenomenon and to highlight the gaps still open for further research.A comparison-based approach is adopted which involved the review of works by several authors and identifying the limiting assumptions,model restrictions and applicability.Pressure transient analysis provides information to aid the identification of important features of reservoirs.It also provides an explanation to complex reservoir pressuredependent variations which have led to improved understanding and optimization of the reservoir dynamics.Pressure transient analysis techniques,however,have limitations as not all its models find application in naturally fractured and vuggy reservoirs as the flow dynamics differ considerably.Pollard’s model presented in 1953 provided the foundation for existing pressure transient analysis in these types of reservoirs,and since then,several authors have modified this basic model and come up with more accurate models to characterize the dynamic pressure behavior in reservoirs with natural fractures,vugs and/or caves,with most having inherent limitations.This paper summarizes what has been done,what knowledge is considered established and the gaps left to be researched on.
基金supported by 973 Program of China(No.2013CB228602)National Science and Technology Major Project of China(No.2016ZX05004003-002)863 Program of China(No.2013AA064202)
文摘The existence of aligned fractures in fluid-saturated rocks leads to obvious attenuation anisotropy and velocity anisotropy. Attenuation anisotropy analysis can be applied to estimate fracture density and scale, which provide important information for reservoir identification. This paper derives P-wave attenuation anisotropy in the ATI media where the symmetry axis is in the arbitrary direction theoretically and modifies the spectral ratio method to measure attenuation anisotropy in the ATI media, thus avoiding a large measurement error when applied to wide azimuth or full azimuth data. Fracture dip and azimuth can be estimated through attenuation anisotropy analysis. For small-scale fractures, fracture scale and fracture density can be determined with enhanced convergence if velocity and attenuation information are both used. We also apply the modified spectralratio method to microseismic field data from an oilfield in East China and extract the fracture dip through attenuation anisotropy analysis. The result agrees with the microseismie monitoring.
基金supported by the National Nature Science Foundation of China(No.51278383,No.51238009 and No.51025827)Key Scientific and Technological Innovation Team of Zhejiang Province(No.2011R50020)Key Scientific and Technological Innovation Team of Wenzhou(No.C20120006)
文摘The ability to capture permeability of fractured porous media plays a significant role in several engineering applications, including reservoir, mining, petroleum and geotechnical engineering. In order to solve fluid flow and coupled flow-deformation problems encountered in these engineering applications,both empirical and theoretical models had been proposed in the past few decades. Some of them are simple but still work in certain circumstances; others are complex but also need some modifications to be applicable. Thus, the understanding of state-of-the-art permeability evolution model would help researchers and engineers solve engineering problems through an appropriate approach. This paper summarizes permeability evolution models proposed by earlier and recent researchers with emphasis on their characteristics and limitations.
基金Supported by ihe Major State Basic Research Development Program of China (973 Program) (2010CB428801, 2010CB428804) the National Science Foundation of China (40972166)+1 种基金 the Major Science and Technology Program for Water Pollution Control and Treatment (2009ZX07212-003) the Technology Development and Applications for Ecology System Reconstruction and Restoration of Yongding River (D08040903700000)
文摘Layered structures with upper porous and lower fractured media are widely distributed in the world. An experimen- tal investigation on rainfall infiltration and solute transport in such layered structures can provide the necessary foundation for effectively preventing and forecasting water bursting in mines, controlling contamination of mine water, and accomplishing ecological restoration of mining areas. A typical physical model of the layered structures with porous and fractured media was created in this study. Then rainfall infiltration experiments were conducted after salt solution was sprayed on the surface of the layered structure. The volumetric water content and concentration of chlorine ions at different specified positions along the profile of the experiment system were measured in real-time. The experimental results showed that the lower fractured media, with a considerably higher permeability than that of the upper porous media, had significant effects on preventing water infil- tration. Moreover, although the porous media were homogeneous statistically in the whole domain, spatial variations in the features of effluent concentrations with regards to time, or so called breakthrough curves, at various sampling points located at the horizontal plane in the porous media near the porous-fractured interface were observed, indicating the diversity of solute transport at small scales. Furthermore, the breakthrough curves of the outflow at the bottom, located beneath the underlying fractured rock, were able to capture and integrate features of the breakthrough curves of both the upper porous and fractured media, which exhibited multiple peaks, while the peak values were reduced one by one with time.
基金Projects(50874064,50804026)supported by National Natural Science Foundation of ChinaProject(E2011208036)supported by the Natural Science Foundation of Hebei Province,China
文摘Coal was considered rock matrix-fractured media composed of rock matrix and fractures, and the rock matrix-fractured media model for heterogeneous and fractured coal bed was presented. In this model the rock matrix is heterogeneous, and the mechanical parameters such as elastic modulus and strength follow Weibull distribution. Fractures in coal bed were generated with the discrete fracture network method, and the properties of fractures were simulated with Desai element. Then the virtual generating system (VGS) of natural heterogeneous and fractured coal bed was developed in Matlab 6.0. The coupled model of gas flow and deformation process based on the rock matrix-fractured media model method and VGS for heterogeneous and fractured coal bed was presented, and the numerical code was developed in Matlab 6.0. The gas flow process in the heterogeneous and fractured coal bed was simulated in a numerical case. The main conclusions are: 1) The natural heterogeneous and fractured coal bed could be simulated by the rock matrix-fractured media model and VGS; 2) The fractures connected with the well have much more effects on gas flow than those non-connected.
文摘A proper form of the Rayleigh number, containing the geometric mean of the vertical and horizontal permeabilities was obtained. The critical value for the onset of stable convection was found. The results proved analytically and numerically that anisotropy in permeability resists the initiation of hydrothermal convection. The equivalence between homogeneously anisotropic media and multiply fractured media was also investigated. It was confirmed that multiply fractured models are comparable to anisotropic models as long as they have the same averaged horizontal or vertical permeabilities and other physical parameters.
基金Foundation ttem Project C. B. 10.00. GL. 03 at Idaho National LaboratoryAcknowledgements This work is supported by the laboratory directed research and development (LDRD) project C. B. 10.00. GL. 03 at Idaho National Laboratory (INL), which is operated by the Battelle Energy Alliance for the U. S. Department of Energy.
基金financially supported by 973 Program (No. 2014CB239104)NSFC and Sinopec Joint Key Project (U1663207)National Key Science and Technology Project (2017ZX05049002)
文摘Fracture systems in nature are complicated. Normally vertical fractures develop in an isotropic background. However, the presence of horizontal fine layering or horizontal fractures in reservoirs makes the vertical fractures develop in a VTI(a transversely isotropic media with a vertical symmetry axis) background. In this case, reservoirs can be described better by using an orthorhombic medium instead of a traditional HTI(a transversely isotropic media with a horizontal symmetry axis) medium. In this paper, we focus on the fracture prediction study within an orthorhombic medium for oil-bearing reservoirs. Firstly, we simplify the reflection coefficient approximation in an orthorhombic medium. Secondly, the impact of horizontal fracturing on the reflection coefficient approximation is analyzed theoretically. Then based on that approximation, we compare and analyze the relative impact of vertical fracturing, horizontal fracturing and fluid indicative factor on traditional ellipse fitting results and the scaled B attributes. We find that scaled B attributes are more sensitive to vertical fractures, so scaled B attributes are proposed to predict vertical fractures. Finally, a test is developed to predict the fracture development intensity of an oil-bearing reservoir. The fracture development observed in cores is used to validate the study method. The findings of both theoretical analyses and practical application reveal that compared with traditional methods, this new approach has improved the prediction of fracture development intensity in oil-bearing reservoirs.
基金supported by the Natural Science Foundation of China(Grant No.52074332).
文摘The karst cave serves as the primary storage space in carbonate reservoirs.Simultaneously connecting multiple karst caves through hydraulic fracturing is key to the efficient development of carbonate reservoirs.However,there is lack of systematic research on the mechanisms and influencing factors of fracture propagation in car-bonate rocks.This paper established models including karst cave models,single natural fracture-cave models,and multiple natural fracture-cave models based on the discrete lattice method.It thoroughly studied how geological and operational factors affect the fracture propagation and the connectivity of karst caves.The final step involved establishing a prototype well model and optimizing operation parameters.The research indicates that an increase in the Young's modulus and pore pressure of karst cave could facilitate hydraulic fracture connecting with caves.When the pore pressure is lower than that in the matrix,it will generate a repulsive effect on hydraulic fractures.The natural fracture along the hydraulic fracture path significantly facilitates the connection with caves.When the wellbore azimuth is less than 60℃,the fracture's diversion radius is small,and hydraulic fractures primarily connect with karst cave through natural fractures.When the wellbore azimuth exceeds 60℃,the fracture's diversion radius increases.Under the combined action of hydraulic fractures and natural fractures,the stimulated volume of the karst cave noticeably increases.Under the same liquid volume,increasing the injection rate could enhance the cave stimulated volume.Combining the findings from numerical simulation studies resulted in the development of a diagram that depicts the connectivity of karst caves,providing valuable insight for hydraulic fracturing operations in carbonate reservoirs.
基金support by the National Natural Science Foundation of China(No.40528003 and 50639090)
文摘Heterogeneity of permeability in fractured media is a hot research topic in hydrogeology. Numerous approaches have been proposed to characterize heterogeneity in the last several decades. However, little attention has been paid to correlate permeability heterogeneity with geological information. In the present study, several causes of permeability heterogeneity, that is, lithology, tectonism, and depth, are identified. The unit absorption values (denoted as ω), which are results obtained from the packer test, are employed to represent permeability. The variability of permeability in sandstone-mudstone is so significant that the value of unit absorptions span 3-4 orders of magnitude at any depth with several test sections. By declustering, it has been found that under a similar tectonic history, the means of permeability differ greatly at different formations as a result of different mudrock contents. It has also been found that in the same formation, permeability can be significantly increased as a result of faulting. The well-known phenomenon, the decrease in permeability with depth, is found to be caused by the fractures in the rock mass, and the relationship between permeability and depth can be established in the form of logoω-logd. After subtracting the trend of ω with absolute depth, the mean of the residual value at each relative depth can be well correlated with the distribution of mudstone. The methods proposed in this paper can be utilized to research in similar study areas.
基金the financial support from the National Institute for Occupational Safety and Health(NIOSH)(200-2014-59613)for conducting this research
文摘Prediction of radon flux from the fractured zone of a propagating cave mine is basically associated with uncertainty and complexity. For instance, there is restricted access to these zones for field measure- ments, and it is quite difficult to replicate the complex nature of both natural and induced fractures in these zones in laboratory studies. Hence, a technique for predicting radon flux from a fractured rock using a discrete fracture network (DFN) model is developed to address these difficulties. This model quantifies the contribution of fractures to the total radon flux, and estimates the fracture density from a measured radon flux considering the effects of advection, diffusion, as well as radon generation and decay. Radon generation and decay are classified as reaction processes. Therefore, the equation solved is termed as the advection-diffusion-reaction equation (ADRE). Peclet number (Pe), a conventional dimensionless parameter that indicates the ratio of mass transport by advection to diffusion, is used to classify the transport regimes. The results show that the proposed model effectively predicts radon flux from a fractured rock. An increase in fracture density for a rock sample with uniformly distributed radon generation rate can elevate radon flux significantly compared with another rock sample with an equivalent increase in radon generation rate. In addition to Pe, two other independent dimensionless parameters (derived for radon transport through fractures) significantly affect radon dimensionless flux. Findings provide insight into radon transport through fractured rocks and can be used to improve radon control measures for proactive mitigation.
基金sponsorship of the National Natural Science Foundation of China(41674130,U19B2008)the Postgraduate Innovation Project in China University of Petroleum(East China)(YCX2021016)for their funding this research。
文摘Accurate estimation of fracture density and orientation is of great significance for seismic characterization of fractured reservoirs.Here,we propose a novel methodology to estimate fracture density and orientation from azimuthal elastic impedance(AEI)difference using singular value decomposition(SVD).Based on Hudson's model,we first derive the AEI equation containing fracture density in HTI media,and then obtain basis functions and singular values from the normalized AEI difference utilizing SVD.Analysis shows that the basis function changing with azimuth is related to fracture orientation,fracture density is the linearly weighted sum of singular values,and the first singular value contributes the most to fracture density.Thus,we develop an SVD-based fracture density and orientation inversion approach constrained by smooth prior elastic parameters.Synthetic example shows that fracture density and orientation can be stably estimated,and the correlation coefficient between the true value and the estimated fracture density is above 0.85 even when an S/N ratio of 2.Field data example shows that the estimated fracture orientation is consistent with the interpretation of image log data,and the estimated fracture density reliably indicates fractured gas-bearing reservoir,which could help to guide the exploration and development of fractured reservoirs.
文摘In order to devoid the hard work and factitious error in selecting charts while analyzing and interpreting hydraulic fracturing fracture parameters, on the basis of the non-Darcy flow factor, this paper put out the non-Darcy flow mathematical model of real gas in the formation and fracture, established the production history automatic matching model to identify fracture parameters, and offered the numerical solutions of those models, which took the variation of fracture conductivity in production process. These results offered a precise and reliable method to understand formation, analyze and evaluate the fracturing treatment quality of gas well.
基金This work was financially supported by the Science Foundation of China University of Petroleum(Beijing)(2462020YXZZ008)the National Natural Science Foundation of China(41804104,41930425,U19B6003-04-03,41774143)+2 种基金the National Key R&D Program of China(2018YFA0702504)the PetroChina Innovation Foundation(2018D-5007-0303)the Science Foundation of SINOPEC Key Laboratory of Geophysics(33550006-20-ZC0699-0001).
文摘In a fractured porous hydrocarbon reservoir,wave velocities and refections depend on frequency and incident angle.A proper description of the frequency dependence of amplitude variations with ofset(AVO)signatures should allow efects of fracture inflls and attenuation and dispersion of fractured media.The novelty of this study lies in the introduction of an improved approach for the investigation of incident-angle and frequency variations-associated refection responses.The improved AVO modeling method,using a frequency-domain propagator matrix method,is feasible to accurately consider velocity dispersion predicted from frequency-dependent elasticities from a rock physics modeling.And hence,the method is suitable for use in the case of an anisotropic medium with aligned fractures.Additionally,the proposed modeling approach allows the combined contributions of layer thickness,interbedded structure,impedance contrast and interferences to frequency-dependent refection coefcients and,hence,yielding seismograms of a layered model with a dispersive and attenuative reservoir.Our numerical results show bulk modulus of fracture fuid signifcantly afects anisotropic attenuation,hence causing frequencydependent refection abnormalities.These implications indicate the study of amplitude versus angle and frequency(AVAF)variations provides insights for better interpretation of refection anomalies and hydrocarbon identifcation in a layered reservoir with vertical transverse isotropy(VTI)dispersive media.