期刊文献+
共找到12,419篇文章
< 1 2 250 >
每页显示 20 50 100
Synergistic anionic/zwitterionic mixed surfactant system with high emulsification efficiency for enhanced oil recovery in low permeability reservoirs 被引量:1
1
作者 Hai-Rong Wu Rong Tan +6 位作者 Shi-Ping Hong Qiong Zhou Bang-Yu Liu Jia-Wei Chang Tian-Fang Luan Ning Kang Ji-Rui Hou 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期936-950,共15页
Emulsification is one of the important mechanisms of surfactant flooding. To improve oil recovery for low permeability reservoirs, a highly efficient emulsification oil flooding system consisting of anionic surfactant... Emulsification is one of the important mechanisms of surfactant flooding. To improve oil recovery for low permeability reservoirs, a highly efficient emulsification oil flooding system consisting of anionic surfactant sodium alkyl glucosyl hydroxypropyl sulfonate(APGSHS) and zwitterionic surfactant octadecyl betaine(BS-18) is proposed. The performance of APGSHS/BS-18 mixed surfactant system was evaluated in terms of interfacial tension, emulsification capability, emulsion size and distribution, wettability alteration, temperature-resistance and salt-resistance. The emulsification speed was used to evaluate the emulsification ability of surfactant systems, and the results show that mixed surfactant systems can completely emulsify the crude oil into emulsions droplets even under low energy conditions. Meanwhile,the system exhibits good temperature and salt resistance. Finally, the best oil recovery of 25.45% is achieved for low permeability core by the mixed surfactant system with a total concentration of 0.3 wt%while the molar ratio of APGSHS:BS-18 is 4:6. The current study indicates that the anionic/zwitterionic mixed surfactant system can improve the oil flooding efficiency and is potential candidate for application in low permeability reservoirs. 展开更多
关键词 Anionic/zwitterionic mixed surfactant system EMULSIFICATION Synergistic effect Low permeability reservoir Enhanced oil recovery
下载PDF
Research on thermal insulation materials properties under HTHP conditions for deep oil and gas reservoir rock ITP-Coring 被引量:1
2
作者 Zhi-Qiang He He-Ping Xie +4 位作者 Ling Chen Jian-Ping Yang Bo Yu Zi-Jie Wei Ming-Zhong Gao 《Petroleum Science》 SCIE EI CAS CSCD 2024年第4期2625-2637,共13页
Deep oil and gas reservoirs are under high-temperature conditions,but traditional coring methods do not consider temperature-preserved measures and ignore the influence of temperature on rock porosity and permeability... Deep oil and gas reservoirs are under high-temperature conditions,but traditional coring methods do not consider temperature-preserved measures and ignore the influence of temperature on rock porosity and permeability,resulting in distorted resource assessments.The development of in situ temperaturepreserved coring(ITP-Coring)technology for deep reservoir rock is urgent,and thermal insulation materials are key.Therefore,hollow glass microsphere/epoxy resin thermal insulation materials(HGM/EP materials)were proposed as thermal insulation materials.The materials properties under coupled hightemperature and high-pressure(HTHP)conditions were tested.The results indicated that high pressures led to HGM destruction and that the materials water absorption significantly increased;additionally,increasing temperature accelerated the process.High temperatures directly caused the thermal conductivity of the materials to increase;additionally,the thermal conduction and convection of water caused by high pressures led to an exponential increase in the thermal conductivity.High temperatures weakened the matrix,and high pressures destroyed the HGM,which resulted in a decrease in the tensile mechanical properties of the materials.The materials entered the high elastic state at 150℃,and the mechanical properties were weakened more obviously,while the pressure led to a significant effect when the water absorption was above 10%.Meanwhile,the tensile strength/strain were 13.62 MPa/1.3%and 6.09 MPa/0.86%at 100℃ and 100 MPa,respectively,which meet the application requirements of the self-designed coring device.Finally,K46-f40 and K46-f50 HGM/EP materials were proven to be suitable for ITP-Coring under coupled conditions below 100℃ and 100 MPa.To further improve the materials properties,the interface layer and EP matrix should be optimized.The results can provide references for the optimization and engineering application of materials and thus technical support for deep oil and gas resource development. 展开更多
关键词 Deep oil and gas reservoir rock In situ temperature-preserved coring(ITPCoring) Hollow glass microsphere/epoxy resin thermal insulation materials(HGM/EP materials) High-temperature and high-pressure(HTHP) Physical and mechanical properties
下载PDF
Geological characteristics of unconventional tight oil reservoir (10^(9) t): A case study of Upper Cretaceous Qingshankou Formation, northern Songliao Basin, NE China
3
作者 Li-zhi Shi Zhuo-zhuo Wang +4 位作者 Zhan-tao Xing Shan Meng Shuai Guo Si-miao Wu Li-yan Luo 《China Geology》 CAS CSCD 2024年第1期51-62,共12页
The Daqing exploration area in the northern Songliao Basin has great potential for unconventional oil and gas resources,among which the total resources of tight oil alone exceed 109 t and is regarded as an important r... The Daqing exploration area in the northern Songliao Basin has great potential for unconventional oil and gas resources,among which the total resources of tight oil alone exceed 109 t and is regarded as an important resource base of Daqing oilfield.After years of exploration in the Qijia area,Songliao Basin,NE China,tight oil has been found in the Upper Cretaceous Qingshankou Formation.To work out tight oil’s geological characteristics,taking tight oil in Gaotaizi oil layers of the Upper Cretaceous Qingshankou Formation in northern Songliao Basin as an example,this paper systematically analyzed the geological characteristics of unconventional tight oil in Gao3 and Gao4 layers of the Qijia area,based on the data of the geological survey,well drilling journey,well logging,and test.It is that three sets of hydrocarbon source rocks(K2qn1,K2qn2+3,and K2n1)develop in the examined area,and exhibit excellent type I and II kerogens,high organic matter abundance,and moderate maturity.The reservoir is generally composed of thin-bedded mudstone,siltstone,and sandstone,and presents poor porosity(average 8.5 vol.%)and air permeability(average 4 mD).The main reservoir space primarily includes intergranular pores,secondary soluble pores,and intergranular soluble pores.Three types of orifice throats were identified,namely fine throat,extra-fine throat,and micro-fine throat.The siltstone is generally oil-bearing,the reservoirs with slime and calcium become worse oil-bearing,and the mudstone has no obvious oil-bearing characteristics.The brittleness indices of the sandstone in the tight oil reservoir range from 40%to 60%,and those of the mudstone range from 40%to 45%,indicating a better brittleness of the tight oil reservoir.Based on the study of typical core hole data,this paper gives a comprehensive evaluation of the properties of the tight oil and establishes a tight oil single well composite bar chart as well as the initial evaluation system with the core of properties in the tight oil reservoir.This study has theoretical guiding significance and practical application value for tight oil exploration and evaluation in the Qijia area. 展开更多
关键词 Unconventional oil and gas Tight oil Thin-bedded mudstone-siltstone-sandstone reservoir Qijia area Qingshankou Formation oil and gas exploration engineering Songliao Basin Daqing oilfield
下载PDF
Permeability Estimation of Shale Oil Reservoir with Laboratory-derived Data: A Case Study of the Chang 7 Member in Ordos Basin
4
作者 Zhang Lin Gao Li +3 位作者 Ba Jing Zhang Meng-Bo José M.Carcione Liu Wei-Hua 《Applied Geophysics》 SCIE CSCD 2024年第3期440-455,616,共17页
The shale oil reservoir within the Yanchang Formations of Ordos Basin harbors substantial oil and gas resources and has recently emerged as the primary focus of unconventional oil and gas exploration and development.D... The shale oil reservoir within the Yanchang Formations of Ordos Basin harbors substantial oil and gas resources and has recently emerged as the primary focus of unconventional oil and gas exploration and development.Due to its complex pore and throat structure,pronounced heterogeneity,and tight reservoir characteristics,the techniques for conventional oil and gas exploration and production face challenges in comprehensive implementation,also indicating that as a vital parameter for evaluating the physical properties of a reservoir,permeability cannot be effectively estimated.This study selects 21 tight sandstone samples from the Q area within the shale oil formations of Ordos Basin.We systematically conduct the experiments to measure porosity,permeability,ultrasonic wave velocities,and resistivity at varying confining pressures.Results reveal that these measurements exhibit nonlinear changes in response to effective pressure.By using these experimental data and effective medium model,empirical relationships between P-and S-wave velocities,permeability and resistivity and effective pressure are established at logging and seismic scales.Furthermore,relationships between P-wave impedance and permeability,and resistivity and permeability are determined.A comparison between the predicted permeability and logging data demonstrates that the impedance–permeability relationship yields better results in contrast to those of resistivity–permeability relationship.These relationships are further applied to the seismic interpretation of shale oil reservoir in the target layer,enabling the permeability profile predictions based on inverse P-wave impedance.The predicted results are evaluated with actual production data,revealing a better agreement between predicted results and logging data and productivity. 展开更多
关键词 shale oil reservoir P-wave impedance RESISTIVITY PERMEABILITY rock physics experiment
下载PDF
Impact of Reservoir Heterogeneity on Bitumen Content in the Mackay River Oil Sands,Athabasca(Canada)
5
作者 YANG Xiaofa YU Diyun +6 位作者 WU Suwei REN Junhao CHENG Dingsheng HUANG Jixin YANG Chengyu MA Guoqing LI Meijun 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2024年第5期1285-1300,共16页
The Lower Cretaceous Manville Group of Upper Mc Murray Formation is one of the main bitumen reservoirs in Athabasca.In this study,the relationship between reservoirs heterogeneity and bitumen geochemical characteristi... The Lower Cretaceous Manville Group of Upper Mc Murray Formation is one of the main bitumen reservoirs in Athabasca.In this study,the relationship between reservoirs heterogeneity and bitumen geochemical characteristics were analyzed through core and microscopic observation,lab analysis,petrophysics and logging data.Based on the sedimentology framework,the formation environment of high-quality oil sand reservoirs and their significance for development were discussed.The results indicate that four types lithofacies were recognized in the Upper Mc Murray Formation based on their depositional characteristics.Each lithofacies reservoirs has unique physical properties,and is subject to varying degrees of degradation,resulting in diversity of bitumen content and geochemical composition.The tidal bar(TB)or tidal channel(TC)facies reservoir have excellent physical properties,which are evaluated as gas or water intervals due to strong degradation.The reservoir of sand bar(SB)facies was evaluated as oil intervals,due to its poor physical properties and weak degradation.The reservoir of mixed flat(MF)facies is composed of sand intercalated with laminated shale,which is evaluated as poor oil intervals due to its poor connectivity.The shale content in oil sand reservoir is very important for the reservoir physical properties and bitumen degradation degree.In the context of regional biodegradation,oil sand reservoirs with good physical properties will suffer from strong degradation,while oil sand reservoirs with relatively poor physical properties are more conducive to the bitumen preservation. 展开更多
关键词 oil sands reservoir heterogeneity geochemical characteristics bitumen content Upper Mc Murray Formation CANADA
下载PDF
Synthesis of temperature and salt resistance silicon dots for effective enhanced oil recovery in tight reservoir
6
作者 Cheng Liu Biao Zhou +4 位作者 Bing-Shan Wang Huan Wang Qing You Guang Zhao Cai-Li Dai 《Petroleum Science》 SCIE EI CAS CSCD 2024年第5期3390-3400,共11页
The intensive development of tight reservoirs has positioned them as a strategic alternative to conventional oil and gas resources. Existing enhanced oil recovery(EOR) methods struggle to effectively exploring reservo... The intensive development of tight reservoirs has positioned them as a strategic alternative to conventional oil and gas resources. Existing enhanced oil recovery(EOR) methods struggle to effectively exploring reservoir oil, resulting in low recovery rates. Novel and effective means of developing tight reservoirs are urgently needed. Nanomaterials have shown promising applications in improving water flooding efficiency, with in-depth research into mechanisms that lower injection pressure and increase water injection volumes. However, the extent of improvement remains limited. In this study, a silicon quantum dots(Si-QDs) material was synthesized via a hydrothermal synthesis method and used to prepare a nanofluid for the efficient recovery of tight reservoir. The Si-QDs, with an approximate diameter of 3 nm and a spherical structure, were surface functionalized with benzenesulfonic acid groups to enhance the performance. The developed nanofluid demonstrated stability without aggregation at 120℃ and a salinity of 60000 mg/L. Core flooding experiments have demonstrated the attractive EOR capabilities of Si-QDs, shedding light of the EOR mechanisms. Si-QDs effectively improve the wettability of rocks, enhancing the sweeping coefficient of injected fluids and expanding sweeping area.Within this sweeping region, Si-QDs efficiently stripping adsorbed oil from the matrix, thus increasing sweeping efficiency. Furthermore, Si-QDs could modify the state of pore-confined crude oil, breaking it down into smaller particles that are easier to displacement in subsequent stages. Si-QDs exhibit compelling EOR potential, positioning them as a promising approach for effectively developing tight oil reservoirs. 展开更多
关键词 Silicon quantum dots Tight reservoir Microfluidic MICRO-CT Enhanced oil recovery Temperature and salt resistance
下载PDF
The mechanisms of thermal solidification agent promoting steam diversion in heavy oil reservoirs
7
作者 Zhan-Xi Pang Qian-Hui Wang +2 位作者 Qiang Meng Bo Wang Dong Liu 《Petroleum Science》 SCIE EI CAS CSCD 2024年第3期1902-1914,共13页
At high cycles of steam huff&puff,oil distribution in reservoirs becomes stronger heterogeneity due to steam channeling.Thermal solidification agent can be used to solve this problem.Its solution is a lowviscosity... At high cycles of steam huff&puff,oil distribution in reservoirs becomes stronger heterogeneity due to steam channeling.Thermal solidification agent can be used to solve this problem.Its solution is a lowviscosity liquid at normal temperature,but it can be solidified above 80℃.The plugging degree is up to 99%at 250℃.The sweep efficiency reaches 59.2%,which is 7.3%higher than pure steam injection.In addition,simultaneous injection of viscosity reducer and/or nitrogen foams can further enhance oil recovery.The mechanism of this technology depends on its strong plugging ability,which changes the flowing pattern of steam to effectively mobilize remaining oil.Viscosity reducer and nitrogen foams further expand the sweep range and extends the effective period.Therefore,thermal solidification agent can plug steam channeling paths and adjust steam flowing direction to significantly enhance oil recovery at high cycles of steam huff&puff. 展开更多
关键词 Heavy oil reservoir Steam huff&puff Steam channeling Steam diversion Plugging performance Mechanism analysis
下载PDF
Impacts of proppant distribution on development of tight oil reservoirs with threshold pressure gradient
8
作者 Ming Yue Wei-Yao Zhu +3 位作者 Fei-Fei Gou Tian-Ru Song Yu-Chun You Qi-Tao Zhang 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期445-457,共13页
Field evidence indicates that proppant distribution and threshold pressure gradient have great impacts on well productivity.Aiming at the development of unconventional oil reservoirs in Triassic Chang-7 Unit,Ordos Bas... Field evidence indicates that proppant distribution and threshold pressure gradient have great impacts on well productivity.Aiming at the development of unconventional oil reservoirs in Triassic Chang-7 Unit,Ordos Basin of China,we presented an integrated workflow to investigate how(1)proppant placement in induced fracture and(2)non-linear flow in reservoir matrix would affect well productivity and fluid flow in the reservoir.Compared with our research before(Yue et al.,2020),here we extended this study into the development of multi-stage fractured horizontal wells(MFHWs)with large-scale complicated fracture geometry.The integrated workflow is based on the finite element method and consists of simulation models for proppant-laden fluid flow,fracture flow,and non-linear seepage flow,respectively.Simulation results indicate that the distribution of proppant inside the induced cracks significantly affects the productivity of the MFHW.When we assign an idealized proppant distribution instead of the real distribution,there will be an overestimation of 44.98%in daily oil rate and 30.63%in cumulative oil production after continuous development of 1000 days.Besides,threshold pressure gradient(TPG)also significantly affects the well performance in tight oil reservoirs.If we simply apply linear Darcy’s law to the reservoir matrix,the overall cumulative oil production can be overrated by 77%after 1000 days of development.In general,this research provides new insights into the development of tight oil reservoirs with TPG and meanwhile reveals the significance of proppant distribution and non-linear fluid flow in the production scenario design. 展开更多
关键词 Proppant distribution Tight oil reservoir Multi-stage fractured horizontal well Threshold pressure gradient Moving boundary
下载PDF
A salt-induced tackifying polymer for enhancing oil recovery in highsalinity reservoirs:Synthesis,evaluation,and mechanism
9
作者 Yining Wu Peihan Li +5 位作者 Bin Yan Xiaohan Li Yongping Huang Juncong Yuan Xiang Feng Caili Dai 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第11期1747-1758,共12页
Polymerflooding is an effective method widely applied for enhancing oil recovery(EOR)by reducing the mobility ratio between theinjected water and crude oil.However,traditional polymers encounter challenges in high sali... Polymerflooding is an effective method widely applied for enhancing oil recovery(EOR)by reducing the mobility ratio between theinjected water and crude oil.However,traditional polymers encounter challenges in high salinity reservoirs due to their salt sensitivity.Toovercome this challenge,we synthesized a zwitterion polymer(PAMNS)with salt-induced tackifying property through copolymerization ofacrylamide and a zwitterion monomer,methylacrylamide propyl-N,N-dimethylbutylsulfonate(NS).NS monomer is obtained from thereaction between 1,4-butanesultone and dimethylamino propyl methylacrylamide.In this study,the rheological properties,salt responsiveness,and EOR efficiency of PAMNS were evaluated.Results demonstrate that PAMNS exhibits desirable salt-induced tackifyingcharacteristics,with viscosity increasing up to 2.4 times as the NaCl concentration reaches a salinity of 30×10^(4)mg L^(-1).Furthermore,highvalence ions possess a much stronger effect on enhancing viscosity,manifested as Mg^(2+)>Ca^(2+)>Na^(+).Molecular dynamics simulations(MD)andfluid dynamics experiment results demonstrate that PAMNS molecules exhibit a more stretched state and enhanced intermolecularassociations in high-salinity environments.It is because of the salt-induced tackifying,PAMNS demonstrates superior performance inpolymerflooding experiments under salinity ranges from 5×10^(4)mg L^(-1)to 20×10^(4)mg L^(-1),leading to 10.38–19.83%higher EOR thantraditional polymers. 展开更多
关键词 High salinity reservoirs Salt-induced tackifying polymer Anti-polyelectrolyte behavior Enhanced oil recovery
下载PDF
Experimental analysis of matrix moveable oil saturation in tight sandstone reservoirs of the south Ordos Basin,China
10
作者 Ting Xu Jun Pu +1 位作者 Xuejie Qin Yi Wei 《Energy Geoscience》 EI 2024年第1期184-195,共12页
Tight oil reservoirs in the south Ordos Basin are characterized by fractured,heterogeneous oil-bearing strata(an oil saturation of less than 55%on average),normal pressure(0.8±)and extra-low permeability(less tha... Tight oil reservoirs in the south Ordos Basin are characterized by fractured,heterogeneous oil-bearing strata(an oil saturation of less than 55%on average),normal pressure(0.8±)and extra-low permeability(less than 0.3 mD).In the Chang 8 tight sandstone reservoir in Honghe oilfield,micro-and nanopores,especially those with a pore-throat radius of less than 1 mm,account for more than 90%.Fluid flow in the matrix is non-linear and crude oil flow rates are very low under normal pressure gradients.An improved understanding of oil mobility in a tight matrix is key to further development of normalpressure tight-oil resources in the continental basin.In this study,constant-velocity and high-pressure mercury injection experiments were conducted using samples of typical tight sandstone cores obtained from the south of Ordos Basin.A new method for reconstructing the full-scale pore-throat distribution characteristics of tight sandstone reservoirs was established successfully,based on which multistage centrifugal tests,tests of low-pressure differential displacement of oil by water,and nuclear magnetic resonance tests were conducted in order to obtain the distribution characteristics of moveable fluid in different pores.The moveable oil saturation(MOS)and degree of oil recovery(i.e.ratio of accumulative oil production to producing geologic reserves)of the core samples under different differential pressures for displacement were determined.As for the tight oil reservoirs in the south Ordos Basin,the moveable fluids are mainly stored in sub-micron(0.10-0.5 mm)pores.For Type I reservoirs(k>0.1 mD),the volume percentage of moveable fluid in pores with a radius larger than 0.5 mm is relatively high(greater than 40%).The degree of oil recovery of water flooding serves as the basis for forecasting recoverable reserves for tight oil reservoirs.Recoverable reserves under water flooding,mainly occur in pores with a radius greater than 0.5 mm.The contribution of Type I reserves to oil production is observed to be greater than 60%,and the degree of oil recovery reaches up to 17.1%.These results help improve our understanding on the evaluation and classification of Chang 8 tight sandstone reservoirs in Honghe oilfield and serve as theoretical basis for pilot tests to explore effective injection media and development methods to improve the matrix-driven pressure differences and displacement efficiency for oil. 展开更多
关键词 Tight reservoir Pore-throat structure Moveable fluid volume Moveable oil saturation(MOS) Waterflooding oil recovery South Ordos basin
下载PDF
The effects of various factors on spontaneous imbibition in tight oil reservoirs
11
作者 Cheng Liu Tian-Ru Wang +3 位作者 Qing You Yue-Chun Du Guang Zhao Cai-Li Dai 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期315-326,共12页
Slickwater fracturing fluids have gained widespread application in the development of tight oil reservoirs. After the fracturing process, the active components present in slickwater can directly induce spontaneous imb... Slickwater fracturing fluids have gained widespread application in the development of tight oil reservoirs. After the fracturing process, the active components present in slickwater can directly induce spontaneous imbibition within the reservoir. Several variables influence the eventual recovery rate within this procedure, including slickwater composition, formation temperature, degree of reservoir fracture development, and the reservoir characteristics. Nonetheless, the underlying mechanisms governing these influences remain relatively understudied. In this investigation, using the Chang-7 block of the Changqing Oilfield as the study site, we employ EM-30 slickwater fracturing fluid to explore the effects of the drag-reducing agent concentration, imbibition temperature, core permeability, and core fracture development on spontaneous imbibition. An elevated drag-reducing agent concentration is observed to diminish the degree of medium and small pore utilization. Furthermore, higher temperatures and an augmented permeability enhance the fluid flow properties, thereby contributing to an increased utilization rate across all pore sizes. Reduced fracture development results in a lower fluid utilization across diverse pore types. This study deepens our understanding of the pivotal factors affecting spontaneous imbibition in tight reservoirs following fracturing. The findings act as theoretical, technical, and scientific foundations for optimizing fracturing strategies in tight oil reservoir transformations. 展开更多
关键词 Tight oil reservoir Spontaneous imbibition Nuclear magnetic resonance Slickwater fracturing fluid Fluid utilization degree
下载PDF
In-situ laboratory study on influencing factors of pre-SC-CO_(2) hybrid fracturing effect in shale oil reservoirs
12
作者 Yu-Xi Zang Hai-Zhu Wang +5 位作者 Bin Wang Yong-Gang Yi Tian-Yu Wang Ming-Liang Shi Gang-Hua Tian Shou-Ceng Tian 《Petroleum Science》 SCIE EI CAS CSCD 2024年第5期3547-3557,共11页
Supercritical CO_(2)(SC-CO_(2)) fracturing, being a waterless fracturing technology, has garnered increasing attention in the shale oil reservoir exploitation industry. Recently, a novel pre-SC-CO_(2) hybrid fracturin... Supercritical CO_(2)(SC-CO_(2)) fracturing, being a waterless fracturing technology, has garnered increasing attention in the shale oil reservoir exploitation industry. Recently, a novel pre-SC-CO_(2) hybrid fracturing method has been proposed, which combines the advantages of SC-CO_(2) fracturing and hydraulic fracturing. However, the specific impacts of different pre-SC-CO_(2) injection conditions on the physical parameters, mechanical properties, and crack propagation behavior of shale reservoirs remain unclear. In this study, we utilize a newly developed “pre-SC-CO_(2) injection → water-based fracturing” integrated experimental device. Through experimentation under in-situ conditions, the impact of pre-SC-CO_(2) injection displacement and volume on the shale mineral composition, mechanical parameters, and fracture propagation behavior are investigated. The findings of the study demonstrate that the pre-injection SC-CO_(2) leads to a reduction in clay and carbonate mineral content, while increasing the quartz content. The correlation between quartz content and SC-CO_(2) injection volume is positive, while a negative correlation is observed with injection displacement. The elastic modulus and compressive strength exhibit a declining trend, while Poisson's ratio shows an increasing trend. The weakening of shale mechanics caused by pre-injection of SC-CO_(2) is positively correlated with the injection displacement and volume.Additionally, pre-injection of SC-CO_(2) enhances the plastic deformation behavior of shale, and its breakdown pressure is 16.6% lower than that of hydraulic fracturing. The breakdown pressure demonstrates a non-linear downward trend with the gradual increase of pre-SC-CO_(2) injection parameters.Unlike hydraulic fracturing, which typically generates primary fractures along the direction of the maximum principal stress, pre-SC-CO_(2) hybrid fracturing leads to a more complex fracture network. With increasing pre-SC-CO_(2) injection displacement, intersecting double Y-shaped complex fractures are formed along the vertical axis. On the other hand, increasing the injection rate generates secondary fractures along the direction of non-principal stress. The insights gained from this study are valuable for guiding the design of pre SC-CO_(2) hybrid fracturing in shale oil reservoirs. 展开更多
关键词 Pre-CO_(2)hybrid fracturing Fracture propagation Fracture pattern Shale oil reservoir
下载PDF
Fluid property identification of the Lower Cretaceous reservoirs with complex oil-water contacts in Deseo Basin,Chad
13
作者 Xinxin Zhang Lianfeng Zhu +4 位作者 Tianjiao Wang Xiaokang Shi Bo Han Jian Shen Hailei Gao 《Energy Geoscience》 EI 2024年第1期89-98,共10页
Recently,exploration breakthroughs have been made in the Lower Cretaceous sandstone reservoirs in the Doseo Basin,but the identification of reservoir fluid property is difficult due to variable reservoir lithology,com... Recently,exploration breakthroughs have been made in the Lower Cretaceous sandstone reservoirs in the Doseo Basin,but the identification of reservoir fluid property is difficult due to variable reservoir lithology,complex oil-water contact within and faint responses of the oil zone,which causes the lower accuracy of reservoir fluid property identification with conventional mudlogging and wirelogging techniques.Applying the geochemical logging,fluorescent logging,mud logging and cutting logging technology,in combination with formation test data,this paper distinguishes the crude oil types,analyzes the logging response characteristics of oil zone after water washing,and establishes the interpretation charts and parameter standards for reservoir fluid properties.The crude oil can be divided into two types,namely viscous-heavy and thin-light,based on total hydrocarbon content and component concentration tested by mud logging,features of pyrolysis gas chromatogram and fluorescence spectroscopy.The general characteristics of oil layers experienced water washing include the decrease of total hydrocarbon content and component concentration from mud logging,the decrease of S1 and PS values from geochemical logging,the decrease of hydrocarbon abundance and absence of some light components in pyrolysis gas chromatogram,and the decrease of fluorescence area and intensity from fluorescence logging.According to crude oil types,the cross plots of S1 versus peak-baseline ratio,and the cross plots of rock wettability versus fluorescence area ratio are drawn and used to interpret reservoir fluid property.Meanwhile,the standards of reservoir fluid parameter are established combining with the parameters of PS and the parameters in above charts,and comprehensive multiparameter correlation in both vertical and horizontal ways is also performed to interpret reservoir fluid property.The application in the Doseo Basin achieved great success,improving interpretation ability of fluid property in the reservoir with complex oil-water contact,and also provided technical reference for the efficient exploration and development of similar reservoirs. 展开更多
关键词 Doseo Basin reservoir interpretation oil-water contact Fluid property Crude oil type
下载PDF
Study on the Impact of Massive Refracturing on the Fracture Network in Tight Oil Reservoir Horizontal Wells
14
作者 Jianchao Shi Yanan Zhang +2 位作者 Wantao Liu Yuliang Su Jian Shi 《Fluid Dynamics & Materials Processing》 EI 2024年第5期1147-1163,共17页
Class III tight oil reservoirs have low porosity and permeability,which are often responsible for low production rates and limited recovery.Extensive repeated fracturing is a well-known technique to fix some of these ... Class III tight oil reservoirs have low porosity and permeability,which are often responsible for low production rates and limited recovery.Extensive repeated fracturing is a well-known technique to fix some of these issues.With such methods,existing fractures are refractured,and/or new fractures are created to facilitate communication with natural fractures.This study explored how different refracturing methods affect horizontal well fracture networks,with a special focus on morphology and related fluid flow changes.In particular,the study relied on the unconventional fracture model(UFM).The evolution of fracture morphology and flow field after the initial fracturing were analyzed accordingly.The simulation results indicated that increased formation energy and reduced reservoir stress differences can promote fracture expansion.It was shown that the length of the fracture network,the width of the fracture network,and the complexity of the fracture can be improved,the oil drainage area can be increased,the distance of oil and gas seepage can be reduced,and the production of a single well can be significantly increased. 展开更多
关键词 Type III tight oil reservoirs refracturing methods horizontal wells fracture network study fracture network evolution
下载PDF
A multi-mechanism numerical simulation model for CO_(2)-EOR and storage in fractured shale oil reservoirs
15
作者 Yuan-Zheng Wang Ren-Yi Cao +3 位作者 Zhi-Hao Jia Bin-Yu Wang Ming Ma Lin-Song Cheng 《Petroleum Science》 SCIE EI CAS CSCD 2024年第3期1814-1828,共15页
Under the policy background and advocacy of carbon capture,utilization,and storage(CCUS),CO_(2)-EOR has become a promising direction in the shale oil reservoir industry.The multi-scale pore structure distribution and ... Under the policy background and advocacy of carbon capture,utilization,and storage(CCUS),CO_(2)-EOR has become a promising direction in the shale oil reservoir industry.The multi-scale pore structure distribution and fracture structure lead to complex multiphase flow,comprehensively considering multiple mechanisms is crucial for development and CO_(2) storage in fractured shale reservoirs.In this paper,a multi-mechanism coupled model is developed by MATLAB.Compared to the traditional Eclipse300 and MATLAB Reservoir Simulation Toolbox(MRST),this model considers the impact of pore structure on fluid phase behavior by the modified Peng—Robinson equation of state(PR-EOS),and the effect simultaneously radiate to Maxwell—Stefan(M—S)diffusion,stress sensitivity,the nano-confinement(NC)effect.Moreover,a modified embedded discrete fracture model(EDFM)is used to model the complex fractures,which optimizes connection types and half-transmissibility calculation approaches between non-neighboring connections(NNCs).The full implicit equation adopts the finite volume method(FVM)and Newton—Raphson iteration for discretization and solution.The model verification with the Eclipse300 and MRST is satisfactory.The results show that the interaction between the mechanisms significantly affects the production performance and storage characteristics.The effect of molecular diffusion may be overestimated in oil-dominated(liquid-dominated)shale reservoirs.The well spacing and injection gas rate are the most crucial factors affecting the production by sensitivity analysis.Moreover,the potential gas invasion risk is mentioned.This model provides a reliable theoretical basis for CO_(2)-EOR and sequestration in shale oil reservoirs. 展开更多
关键词 CO_(2)-EOR CO_(2)storage Shale oil reservoir Complex fracture model Multiple mechanisms
下载PDF
An Integrated Optimization Method for CO_(2) Pre-Injection during Hydraulic Fracturing in Heavy Oil Reservoirs
16
作者 Hong Dong Xiding Gao +6 位作者 Xinqi Zhang Qian Wang Haipeng Xu Binrui Wang Chengguo Gao Kaiwen Luo Hengyi Jiang 《Fluid Dynamics & Materials Processing》 EI 2024年第9期1971-1991,共21页
CO_(2) pre-injection during hydraulic fracturing is an important method for the development of medium to deep heavy oil reservoirs.It reduces the interfacial tension and viscosity of crude oil,enhances its flowability... CO_(2) pre-injection during hydraulic fracturing is an important method for the development of medium to deep heavy oil reservoirs.It reduces the interfacial tension and viscosity of crude oil,enhances its flowability,maintains reservoir pressure,and increases reservoir drainage capacity.Taking the Badaowan Formation as an example,in this study a detailed three-dimensional geomechanical model based on static data from well logging interpretations is elaborated,which can take into account both vertical and horizontal geological variations and mechanical characteristics.A comprehensive analysis of the impact of key construction parameters on Pre-CO_(2) based fracturing(such as cluster spacing and injection volume),is therefore conducted.Thereafter,using optimized construction parameters,a non-structured grid for dynamic development prediction is introduced,and the capacity variations of different production scenarios are assessed.On the basis of the simulation results,reasonable fracturing parameters are finally determined,including cluster spacing,fracturing fluid volume,proppant concentration,and well spacing. 展开更多
关键词 Heavy oil reservoir pre-storage CO_(2)energy fracturing horizontal well fracturing parameters numerical simulation
下载PDF
Enrichment model and major controlling factors of below-source tight oil in Lower Cretaceous Fuyu reservoirs in northern Songliao Basin,NE China
17
作者 WANG Xiaojun BAI Xuefeng +9 位作者 LI Junhui JIN Zhijun WANG Guiwen CHEN Fangju ZHENG Qiang HOU Yanping YANG Qingjie LI Jie LI Junwen CAI Yu 《Petroleum Exploration and Development》 SCIE 2024年第2期279-291,共13页
Based on the geochemical,seismic,logging and drilling data,the Fuyu reservoirs of the Lower Cretaceous Quantou Formation in northern Songliao Basin are systematically studied in terms of the geological characteristics... Based on the geochemical,seismic,logging and drilling data,the Fuyu reservoirs of the Lower Cretaceous Quantou Formation in northern Songliao Basin are systematically studied in terms of the geological characteristics,the tight oil enrichment model and its major controlling factors.First,the Quantou Formation is overlaid by high-quality source rocks of the Upper Cretaceous Qingshankou Formation,with the development of nose structure around sag and the broad and continuous distribution of sand bodies.The reservoirs are tight on the whole.Second,the configuration of multiple elements,such as high-quality source rocks,reservoir rocks,fault,overpressure and structure,controls the tight oil enrichment in the Fuyu reservoirs.The source-reservoir combination controls the tight oil distribution pattern.The pressure difference between source and reservoir drives the charging of tight oil.The fault-sandbody transport system determines the migration and accumulation of oil and gas.The positive structure is the favorable place for tight oil enrichment,and the fault-horst zone is the key part of syncline area for tight oil exploration.Third,based on the source-reservoir relationship,transport mode,accumulation dynamics and other elements,three tight oil enrichment models are recognized in the Fuyu reservoirs:(1)vertical or lateral migration of hydrocarbon from source rocks to adjacent reservoir rocks,that is,driven by overpressure,hydrocarbon generated is migrated vertically or laterally to and accumulates in the adjacent reservoir rocks;(2)transport of hydrocarbon through faults between separated source and reservoirs,that is,driven by overpressure,hydrocarbon migrates downward through faults to the sandbodies that are separated from the source rocks;and(3)migration of hydrocarbon through faults and sandbodies between separated source and reservoirs,that is,driven by overpressure,hydrocarbon migrates downwards through faults to the reservoir rocks that are separated from the source rocks,and then migrates laterally through sandbodies.Fourth,the differences in oil source conditions,charging drive,fault distribution,sandbody and reservoir physical properties cause the differential enrichment of tight oil in the Fuyu reservoirs.Comprehensive analysis suggests that the Fuyu reservoir in the Qijia-Gulong Sag has good conditions for tight oil enrichment and has been less explored,and it is an important new zone for tight oil exploration in the future. 展开更多
关键词 northern Songliao Basin Cretaceous Quantou Formation Qingshankou Formation upper generation and lower storage Fuyu reservoir tight oil main control factor enrichment model
下载PDF
Effect of CO_(2)flooding in an oil reservoir with strong bottom-water drive in the Tahe Oilfield,Tarim Basin,Northwest China
18
作者 Li Zhang Haiying Liao Maolei Cui 《Energy Geoscience》 EI 2024年第1期230-233,共4页
The dissolution and diffusion of CO_(2)in oil and water and its displacement mechanism were investigated by laboratory experiment and numerical simulation for Block 9 in the Tahe oilfield,a sandstone oil reservoir wit... The dissolution and diffusion of CO_(2)in oil and water and its displacement mechanism were investigated by laboratory experiment and numerical simulation for Block 9 in the Tahe oilfield,a sandstone oil reservoir with strong bottom-water drive in Tarim Basin,Northwest China.Such parameters were analyzed as solubility ratio of CO_(2)in oil,gas and water,interfacial tension,in-situ oil viscosity distribution,remaining oil saturation distribution,and oil compositions.The results show that CO_(2)flooding could control water coning and increase oil production.In the early stage of the injection process,CO_(2)expanded vertically due to gravity differentiation,and extended laterally under the action of strong bottom water in the intermediate and late stages.The CO_(2)got enriched and extended at the oil-water interface,forming a high interfacial tension zone,which inhibited the coning of bottom water to some extent.A miscible region with low interfacial tension formed at the gas injection front,which reduced the in-situ oil viscosity by about 50%.The numerical simulation results show that enhanced oil recovery(EOR)is estimated at 5.72%and the oil exchange ratio of CO_(2)is 0.17 t/t. 展开更多
关键词 Strong bottom-water drive reservoir CO_(2)flooding Enhanced oil recovery Coning of bottom water Tahe oilfield Tarim Basin Northwest China
下载PDF
Surface Loess Susceptibility Anomalies Directly Indicating Oil and Gas Reservoirs 被引量:1
19
作者 邵广周 梁志强 +2 位作者 王再锋 刘国华 王卫东 《Applied Geophysics》 SCIE CSCD 2005年第4期197-203,共7页
It is a fact that the near surface loess has magnetic susceptibility anomalies in oil and gas areas. Why these anomalies occur and whether they have any significant value for the exploration of oil and gas reservoirs ... It is a fact that the near surface loess has magnetic susceptibility anomalies in oil and gas areas. Why these anomalies occur and whether they have any significant value for the exploration of oil and gas reservoirs are questions that geophysicists are mostly concerned about and study. We analyze the cause of the formation of surface loess susceptibility anomalies in oil and gas areas, process the observations of the susceptibility of loess samples taken from an oil and gas area in western China with proper mathematical methods, and determine the background value of loess susceptibility. These results are used to determine oil and gas prospect areas with a numeric evaluation factor based on the susceptibility anomalies. Actual oil wells have verified that using the susceptibility anomalies to indicate the location of oil and gas reservoirs is valid. 展开更多
关键词 SUSCEPTIBILITY oil and gas reservoirs surface loess and oil well.
下载PDF
Necessity and feasibility of improving the residual resistance factor of polymer flooding in heavy oil reservoirs 被引量:16
20
作者 Shi Leiting Ye Zhongbin Zhang Zhuo Zhou Changjiang Zhu Shanshan Guo Zhidong 《Petroleum Science》 SCIE CAS CSCD 2010年第2期251-256,共6页
The efficiency of water flooding in heavy oil reservoirs would be improved by increasing the viscosity of the displacing phase, but the sweep efficiency is not of significance due to the low mobility of the vicious oi... The efficiency of water flooding in heavy oil reservoirs would be improved by increasing the viscosity of the displacing phase, but the sweep efficiency is not of significance due to the low mobility of the vicious oil. On the basis of mobility control theory, increasing the residual resistance factor not only reduces the water-oil mobility ratio but also decreases the requirement for viscosity enhancement of the polymer solution. The residual resistance factor caused by hydrophobic associating polymer solution is higher than that caused by polyacrylamide solution in brine containing high concentrations of calcium and magnesium ions. The results of numerical simulations show that the polymer flooding efficiency improved by increasing the residual resistance factor is far better than that by only increasing solution viscosity. The recovery factor of heavy oil reservoirs (70 mPa·s) can be enhanced by hydrophobic associating polymer solution of high residual resistance factor (more than 3) and high effective viscosity (24 mPa·s). Therefore, increasing the residual resistance factor of the polymer solution not only decreases the requirement for the viscosity of polymer solution injected into heavy oil reservoirs but also is favorable to enhanced oil recovery during polymer flooding. 展开更多
关键词 Heavy oil reservoir polymer flooding mobility control residual resistance factor VISCOSITY
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部