We are delighted to serve as guest editors for this special issue in the Journal of Rock Mechanics and Geotechnical Engineering.The purpose of this special issue is dedicated to gathering the latest research work on M...We are delighted to serve as guest editors for this special issue in the Journal of Rock Mechanics and Geotechnical Engineering.The purpose of this special issue is dedicated to gathering the latest research work on Multiscale&Multifield Coupling in Geomechanics,where we delve into the intricate interplay of various fields and scales that govern the behavior of geomaterials.In total,30 manuscripts from USA,China,UK,Germany,Canada,India and United Arab Emirates are selected to be included in this issue.展开更多
In the quest for a sustainable and abundant energy source, nuclear fusion technology stands as a beacon of hope. This study introduces a groundbreaking quantum mechanically effective induction system designed for magn...In the quest for a sustainable and abundant energy source, nuclear fusion technology stands as a beacon of hope. This study introduces a groundbreaking quantum mechanically effective induction system designed for magnetic plasma confinement within fusion reactors. The pursuit of clean energy, essential to combat climate change, hinges on the ability to harness nuclear fusion efficiently. Traditional approaches have faced challenges in plasma stability and energy efficiency. The novel induction system presented here not only addresses these issues but also transforms fusion reactors into integrated construction systems. This innovation promises compact fusion reactors, marking a significant step toward a clean and limitless energy future, free from the constraints of traditional power sources. This revolutionary quantum induction system redefines plasma confinement in fusion reactors, unlocking clean, compact, and efficient energy production.展开更多
A study was conducted to analyze the deformation mechanism of strongly weathered quartz schist in the Daliangshan Tunnel,located in the western Transverse Mountain area.A large deformation problem was experienced duri...A study was conducted to analyze the deformation mechanism of strongly weathered quartz schist in the Daliangshan Tunnel,located in the western Transverse Mountain area.A large deformation problem was experienced during the tunnel construction.To mitigate this problem,a support system was designed incorporating negative Poisson ratio(NPR)anchor cables with negative Poisson ratio effect.Physical model experiments,field experiments,and numerical simulation experiments were conducted to investigate the compensation mechanical behavior of NPR anchor cables.The large deformations of soft rocks in the Daliangshan Tunnel are caused by a high ground stress,a high degree of joint fracture development,and a high degree of surrounding rock fragmentation.A compensation mechanics support system combining long and short NPR anchor cables was suggested to provide sufficient counter-support force(approximately 350 kN)for the surrounding rock inside the tunnel.Comparing the NPR anchor cable support system with the original support system used in the Daliangshan tunnel showed that an NPR anchor cable support system,combining cables of 6.3 m and 10.3 m in length,effectively prevented convergence of surrounding rock deformation,and the integrated settlement convergence value remained below 300 mm.This study provides an effective scientific basis for resolving large deformation problems in deeply buried soft rocks in western transverse mountain areas.展开更多
Hydraulic fracturing is a mature and effectivemethod for deep oil and gas production,which provides a foundation for deep oil and gas production.One of the key aspects of implementing hydraulic fracturing technology l...Hydraulic fracturing is a mature and effectivemethod for deep oil and gas production,which provides a foundation for deep oil and gas production.One of the key aspects of implementing hydraulic fracturing technology lies in understanding mechanics response characteristics of rocks in deep reservoirs under complex stress conditions.In this work,based on outcrop core samples,high-stress triaxial compression tests were designed to simulate the rock mechanics behavior of deep reservoirs in Bozhong Sag.Additionally,this study analyzes the deformation and damage law for rock under different stress conditions.Wherein,with a particular focus on combining energy dissipation theory to further understand damage law for deep reservoirs.The experimental results show that regardless of stress conditions,the process of deformation/failure of deep-seated reservoirs goes through five stages:Fracture compaction,newfracture formation,stable fracture expansion,unstable fracture expansion,and post-peak residual deformation.Under different stress conditions,the energy change laws of specimens are similar.The energy dissipation process of rocks corresponds closely to the trend of deformation-failure curve,then displays distinctive stage characteristics.Wherein,in stage of rock fracture compaction,the input energy curve is approximately coincident with the elastic strain energy curve,while the dissipation energy curve remains near zero.With the increase of strain,the growth rate of elastic strain energy increases gradually,but with the deformation entering the crack propagation stage,the growth rate of elastic strain energy slows down and the dissipation energy increases gradually.Finally,in the post-peak stage,rock fracture releases a lot of energy,which leads to the sharp decline of elastic strain energy curve.In addition,the introduction of damage variable D quantifies the analysis of the extent of failure for rocks.During the process of increasing strain,rock damage exhibits nonlinear growth with increasing stress.展开更多
In clinical practice, dentists sometimes encounter phenomena that cannot be explained by modern western medical concepts;for example, the patient’s medical symptoms improve by bringing medicines or dentures close to ...In clinical practice, dentists sometimes encounter phenomena that cannot be explained by modern western medical concepts;for example, the patient’s medical symptoms improve by bringing medicines or dentures close to the body. Although it seems difficult to completely elucidate the mechanism through modern western medicine, it can be explained using quantum mechanics. The quantum, the smallest unit of matter composition, exhibits wave-particle duality. The fact that symptoms can be improved simply by bringing dentures or medicines closer to the body indicates that the waves emitted by dentures or medicines interfere with the pathological waves emitted by the pathological site. Thus, the pathological waves are deformed and lead to a change in symptoms. In this way, quantum theory can explain phenomena that are difficult to elucidate in conventional medicine, which are encountered in clinical practice. So far, the author has presented a case of difficulty in raising the upper limb where the symptoms improved without the need for dentures in the mouth by adjusting the dentures outside the mouth. This time, the author would like to introduce a case which the patient’s knee pain improved by adjusting the dentures outside the mouth.展开更多
Planck scale plays a vital role in describing fundamental forces. Space time describes strength of fundamental force. In this paper, Einstein’s general relativity equation has been described in terms of contraction a...Planck scale plays a vital role in describing fundamental forces. Space time describes strength of fundamental force. In this paper, Einstein’s general relativity equation has been described in terms of contraction and expansion forces of space time. According to this, the space time with Planck diameter is a flat space time. This is the only diameter of space time that can be used as signal transformation in special relativity. This space time diameter defines the fundamental force which belongs to that space time. In quantum mechanics, this space time diameter is only the quantum of space which belongs to that particular fundamental force. Einstein’s general relativity equation and Planck parameters of quantum mechanics have been written in terms of equations containing a constant “K”, thus found a new equation for transformation of general relativity space time in to quantum space time. In this process of synchronization, there is a possibility of a new fundamental force between electromagnetic and gravitational forces with Planck length as its space time diameter. It is proposed that dark matter is that fundamental force carrying particle. By grand unification equation with space-time diameter, we found a coupling constant as per standard model “α<sub>s</sub>” for that fundamental force is 1.08 × 10<sup>-23</sup>. Its energy calculated as 113 MeV. A group of experimental scientists reported the energy of dark matter particle as 17 MeV. Thorough review may advance science further.展开更多
The finite element method (FEM) plays a valuable role in computer modeling and is beneficial to the mechanicaldesign of various structural parts. However, the elements produced by conventional FEM are easily inaccurat...The finite element method (FEM) plays a valuable role in computer modeling and is beneficial to the mechanicaldesign of various structural parts. However, the elements produced by conventional FEM are easily inaccurate andunstable when applied. Therefore, developing new elements within the framework of the generalized variationalprinciple is of great significance. In this paper, an 8-node plane hybrid finite element with 15 parameters (PHQ8-15β) is developed for structural mechanics problems based on the Hellinger-Reissner variational principle.According to the design principle of Pian, 15 unknown parameters are adopted in the selection of stress modes toavoid the zero energy modes.Meanwhile, the stress functions within each element satisfy both the equilibrium andthe compatibility relations of plane stress problems. Subsequently, numerical examples are presented to illustrate theeffectiveness and robustness of the proposed finite element. Numerical results show that various common lockingbehaviors of plane elements can be overcome. The PH-Q8-15β element has excellent performance in all benchmarkproblems, especially for structures with varying cross sections. Furthermore, in bending problems, the reasonablemesh shape of the new element for curved edge structures is analyzed in detail, which can be a useful means toimprove numerical accuracy.展开更多
The SI system of units in rotational mechanics yields correct numerical results, but it produces physically incorrect units of measure in many cases. SI units also violate the principle of general covariance—the gene...The SI system of units in rotational mechanics yields correct numerical results, but it produces physically incorrect units of measure in many cases. SI units also violate the principle of general covariance—the general rule for defining continuous coordinates and units in mathematics and mathematical physics. After 30+ years of wrestling with these problems, the ultimate authority on units of measure has declared that Newton–meter and Joule are not equivalent in rotational mechanics, as they are in the rest of physics. This article proposes a simple modification to SI units called “Nonstandard International units” (“NI units”) until a better name is agreed upon. NI units yield correct numerical results and physically correct units of measure, and they satisfy the principle of general covariance. The main obstacle to the adoption of NI units is the consensus among users that the radius of rotation should have the unit meter because the radius can be measured with a ruler. NI units assigned to radius should have units meter/radian because the radius is a conversion factor between angular size and circumferential length, as in arclength = rθ. To manage the social consensus behind SI units, the author recommends retaining SI units as they are, and informing users who want correct units that NI units solve the technical problems of SI units.展开更多
Cells,tissues,and organs are constantly subjected to the action of mechanical forces from the extracellular environment-and the nervous system is no exception.Cell-intrinsic properties such as membrane lipid compositi...Cells,tissues,and organs are constantly subjected to the action of mechanical forces from the extracellular environment-and the nervous system is no exception.Cell-intrinsic properties such as membrane lipid composition,abundance of mechanosensors,and cytoskeletal dynamics make cells more or less likely to sense these forces.Intrinsic and extrinsic cues are integrated by cells and this combined information determines the rate and dynamics of membrane protrusion growth or retraction(Yamada and Sixt,2019).Cell protrusions are extensions of the plasma membrane that play crucial roles in diverse contexts such as cell migration and neuronal synapse formation.In the nervous system,neurons are highly dynamic cells that can change the size and number of their pre-and postsynaptic elements(called synaptic boutons and dendritic spines,respectively),in response to changes in the levels of synaptic activity through a process called plasticity.Synaptic plasticity is a hallmark of the nervous system and is present throughout our lives,being required for functions like memory formation or the learning of new motor skills(Minegishi et al.,2023;Pillai and Franze,2024).展开更多
Precipitation strengthening is a crucial microscopic mechanism for enhancing the strength of magnesium alloys. In order to elucidate the influence of precipitation on the microscopic deformation mechanisms and macrosc...Precipitation strengthening is a crucial microscopic mechanism for enhancing the strength of magnesium alloys. In order to elucidate the influence of precipitation on the microscopic deformation mechanisms and macroscopic mechanical response of magnesium alloys under cyclic loading conditions, we employed a crystal plasticity model to analyze the stress-strain curves, specific crystal plane diffraction intensities, and the temporal evolution of various microscopic deformation mechanisms and twinning volume fractions for an extruded magnesium alloy, AXM10304, containing coherent precipitates. The research findings indicate that precipitation does not fundamentally alter the microscopic mechanisms of this alloy. However, it hinders twinning during the compression stage, mildly promotes detwinning during the tension stage, and enhances tension secondary hardening by elevating the difficulty of activation of the prismatic slip.展开更多
This paper explores the integration of simulation technology in Engineering Mechanics(EM)teaching in vocational colleges.A case study was conducted using the tensile test as an example,and digital resources,such as co...This paper explores the integration of simulation technology in Engineering Mechanics(EM)teaching in vocational colleges.A case study was conducted using the tensile test as an example,and digital resources,such as colored Mises stress nephograms,were obtained.These resources were integrated into the original curriculum to conduct teaching experiments.The results show that the use of digital resources significantly improved the quality of teaching in EM.The integration of simulation technology in EM teaching provides a promising direction for the improvement of vocational education and the cultivation of high-quality skilled talents.The development and application of more simulation-based teaching cases should be studied by scholars.展开更多
The feasibility of manufacturing Ti-6Al-4V samples through a combination of laser-aided additive manufacturing with powder(LAAM_(p))and wire(LAAM_(w))was explored.A process study was first conducted to successfully ci...The feasibility of manufacturing Ti-6Al-4V samples through a combination of laser-aided additive manufacturing with powder(LAAM_(p))and wire(LAAM_(w))was explored.A process study was first conducted to successfully circumvent defects in Ti-6Al-4V deposits for LAAM_(p) and LAAM_(w),respectively.With the optimized process parameters,robust interfaces were achieved between powder/wire deposits and the forged substrate,as well as between powder and wire deposits.Microstructure characterization results revealed the epitaxial prior β grains in the deposited Ti-6Al-4V,wherein the powder deposit was dominated by a finerα′microstructure and the wire deposit was characterized by lamellar α phases.The mechanisms of microstructure formation and correlation with mechanical behavior were analyzed and discussed.The mechanical properties of the interfacial samples can meet the requirements of the relevant Aerospace Material Specifications(AMS 6932)even without post heat treatment.No fracture occurred within the interfacial area,further suggesting the robust interface.The findings of this study highlighted the feasibility of combining LAAM_(p) and LAAM_(w) in the direct manufacturing of Ti-6Al-4V parts in accordance with the required dimensional resolution and deposition rate,together with sound strength and ductility balance in the as-built condition.展开更多
Microstructure,texture,and mechanical properties of the extruded Mg-2.49Nd-1.82Gd-0.2Zn-0.2Zr alloy were investigated at different extrusion temperatures(260 and 320℃),extrusion ratios(10:1,15:1,and 30:1),and extrusi...Microstructure,texture,and mechanical properties of the extruded Mg-2.49Nd-1.82Gd-0.2Zn-0.2Zr alloy were investigated at different extrusion temperatures(260 and 320℃),extrusion ratios(10:1,15:1,and 30:1),and extrusion speeds(3 and 6 mm/s).The experimental results exhibited that the grain sizes after extrusion were much finer than that of the homogenized alloy,and the second phase showed streamline distribution along the extrusion direction(ED).With extrusion temperature increased from 260 to 320℃,the microstructure,texture,and mechanical properties of alloys changed slightly.The dynamic recrystallization(DRX)degree and grain sizes enhanced as the extrusion ratio increased from 10:1 to 30:1,and the strength gradually decreased but elongation(EL)increased.With the extrusion speed increased from 3 to 6 mm/s,the grain sizes and DRX degree increased significantly,and the samples presented the typical<2111>-<1123>rare-earth(RE)textures.The alloy extruded at 260℃ with extrusion ratio of 10:1 and extrusion speed of 3 mm/s showed the tensile yield strength(TYS)of 213 MPa and EL of 30.6%.After quantitatively analyzing the contribution of strengthening mechanisms,it was found that the grain boundary strengthening and dislocation strengthening played major roles among strengthening contributions.These results provide some guidelines for enlarging the industrial application of extruded Mg-RE alloy.展开更多
This paper takes the assessment and evaluation of computational mechanics course as the background,and constructs a diversified course evaluation system that is student-centered and integrates both quantitative and qu...This paper takes the assessment and evaluation of computational mechanics course as the background,and constructs a diversified course evaluation system that is student-centered and integrates both quantitative and qualitative evaluation methods.The system not only pays attention to students’practical operation and theoretical knowledge mastery but also puts special emphasis on the cultivation of students’innovative abilities.In order to realize a comprehensive and objective evaluation,the assessment and evaluation method of the entropy weight model combining TOPSIS(Technique for Order Preference by Similarity to Ideal Solution)multi-attribute decision analysis and entropy weight theory is adopted,and its validity and practicability are verified through example analysis.This method can not only comprehensively and objectively evaluate students’learning outcomes,but also provide a scientific decision-making basis for curriculum teaching reform.The implementation of this diversified course evaluation system can better reflect the comprehensive ability of students and promote the continuous improvement of teaching quality.展开更多
The complex morphological,anatomical,physiological,and chemical mechanisms within the aging brain have been the hot topic of research for centuries.The aging process alters the brain structure that affects functions a...The complex morphological,anatomical,physiological,and chemical mechanisms within the aging brain have been the hot topic of research for centuries.The aging process alters the brain structure that affects functions and cognitions,but the worsening of such processes contributes to the pathogenesis of neurodegenerative disorders,such as Alzheimer's disease.Beyond these observable,mild morphological shifts,significant functional modifications in neurotransmission and neuronal activity critically influence the aging brain.Understanding these changes is important for maintaining cognitive health,especially given the increasing prevalence of age-related conditions that affect cognition.This review aims to explore the age-induced changes in brain plasticity and molecular processes,differentiating normal aging from the pathogenesis of Alzheimer's disease,thereby providing insights into predicting the risk of dementia,particularly Alzheimer's disease.展开更多
Regulated cell death is a form of cell death that is actively controlled by biomolecules.Several studies have shown that regulated cell death plays a key role after spinal cord injury.Pyroptosis and ferroptosis are ne...Regulated cell death is a form of cell death that is actively controlled by biomolecules.Several studies have shown that regulated cell death plays a key role after spinal cord injury.Pyroptosis and ferroptosis are newly discovered types of regulated cell deaths that have been shown to exacerbate inflammation and lead to cell death in damaged spinal cords.Autophagy,a complex form of cell death that is interconnected with various regulated cell death mechanisms,has garnered significant attention in the study of spinal cord injury.This injury triggers not only cell death but also cellular survival responses.Multiple signaling pathways play pivotal roles in influencing the processes of both deterioration and repair in spinal cord injury by regulating pyroptosis,ferroptosis,and autophagy.Therefore,this review aims to comprehensively examine the mechanisms underlying regulated cell deaths,the signaling pathways that modulate these mechanisms,and the potential therapeutic targets for spinal cord injury.Our analysis suggests that targeting the common regulatory signaling pathways of different regulated cell deaths could be a promising strategy to promote cell survival and enhance the repair of spinal cord injury.Moreover,a holistic approach that incorporates multiple regulated cell deaths and their regulatory pathways presents a promising multi-target therapeutic strategy for the management of spinal cord injury.展开更多
The effects of induction unloading such as drilling, blasting, lancing and water-infusion softening on weakening of rock mechanics properties were investigated. Three stress paths were chosen as test schemes correspon...The effects of induction unloading such as drilling, blasting, lancing and water-infusion softening on weakening of rock mechanics properties were investigated. Three stress paths were chosen as test schemes corresponding to the triaxial compressive test, pre-peak and post-peak unloading the confining pressure tests. The results show that compression deformation is the main cause of rock failure under loading condition. However, the strong dilatation leads to the rock failure along unloading direction. Rock failure happens even under little axial stress with confining pressure unloading. Poisson ratio increases with the decrease of confining pressure during the process of unloading. Elastic modulus increases slowly along with the decline of confining pressure, but decreases rapidly when unloaded to yielding strength. It shows that the weakening rate of rock intensity tends to be faster with easily failure under the unloading condition.展开更多
In order to analyze the pavement stress caused by vehicle bumping at an approach slab, a simplified four-wheeled bi- axle vehicle-moving model is proposed. The effect of damping and vibration reduction in the process ...In order to analyze the pavement stress caused by vehicle bumping at an approach slab, a simplified four-wheeled bi- axle vehicle-moving model is proposed. The effect of damping and vibration reduction in the process of vehicle-moving is not considered. Based on the position change of vehicle wheels at the approach slab, the vehicle dynamic vibration equations are summarized. Meanwhile, the undetermined coefficients of the vibration equations are obtained using the boundary and initial conditions of the vehicle. The analytical motion solutions of rear and front wheels at different stages are concluded. Consequently, a four-wheeled vehicle model is developed and vibration equations are provided, which can be used to analyze the impact of complicated stress on pavement. The results show that the excessive stress and stress concentration will occur at the approach slab, and it needs to be strengthened.展开更多
Damage statistical mechanics model of horizontal section height in the top caving was constructed in the paper. The influence factors including supporting pressure, dip angle and characteristic of coal on horizontal s...Damage statistical mechanics model of horizontal section height in the top caving was constructed in the paper. The influence factors including supporting pressure, dip angle and characteristic of coal on horizontal section height were analyzed as well. By terms of the practice project analysis, the horizontal section height increases with the increase of dip angle β and thickness of coal seam M. Dip angle of coal seam β has tremendous impact on horizontal section height, while thickness of coal seam M has slight impact. When thickness of coal seam is below 10m, horizontal section height increases sharply. While thickness exceeds 15m, it is not major factor influencing on horizontal section height any long.展开更多
文摘We are delighted to serve as guest editors for this special issue in the Journal of Rock Mechanics and Geotechnical Engineering.The purpose of this special issue is dedicated to gathering the latest research work on Multiscale&Multifield Coupling in Geomechanics,where we delve into the intricate interplay of various fields and scales that govern the behavior of geomaterials.In total,30 manuscripts from USA,China,UK,Germany,Canada,India and United Arab Emirates are selected to be included in this issue.
文摘In the quest for a sustainable and abundant energy source, nuclear fusion technology stands as a beacon of hope. This study introduces a groundbreaking quantum mechanically effective induction system designed for magnetic plasma confinement within fusion reactors. The pursuit of clean energy, essential to combat climate change, hinges on the ability to harness nuclear fusion efficiently. Traditional approaches have faced challenges in plasma stability and energy efficiency. The novel induction system presented here not only addresses these issues but also transforms fusion reactors into integrated construction systems. This innovation promises compact fusion reactors, marking a significant step toward a clean and limitless energy future, free from the constraints of traditional power sources. This revolutionary quantum induction system redefines plasma confinement in fusion reactors, unlocking clean, compact, and efficient energy production.
基金Project(41941018)supported by the National Natural Science Foundation of China for the Special Project FundingProject(22-JKCF-08)supported by the Study on in-situ Stress Database and 3D in-situ Stress Inversion Technology of Highway Tunnel in Shanxi Province,China+1 种基金Project(2022-JKKJ-6)supported by the Study on Disaster Mechanism and NPR Anchor Cable Prevention and Control of Coal Mining Caving Subsidence in Operating Tunnel in Mountainous Area,ChinaProject(BBJ2024032)supported by the Fundamental Research Funds for the Central Universities(PhD Top Innovative Talents Fund of CUMTB),China。
文摘A study was conducted to analyze the deformation mechanism of strongly weathered quartz schist in the Daliangshan Tunnel,located in the western Transverse Mountain area.A large deformation problem was experienced during the tunnel construction.To mitigate this problem,a support system was designed incorporating negative Poisson ratio(NPR)anchor cables with negative Poisson ratio effect.Physical model experiments,field experiments,and numerical simulation experiments were conducted to investigate the compensation mechanical behavior of NPR anchor cables.The large deformations of soft rocks in the Daliangshan Tunnel are caused by a high ground stress,a high degree of joint fracture development,and a high degree of surrounding rock fragmentation.A compensation mechanics support system combining long and short NPR anchor cables was suggested to provide sufficient counter-support force(approximately 350 kN)for the surrounding rock inside the tunnel.Comparing the NPR anchor cable support system with the original support system used in the Daliangshan tunnel showed that an NPR anchor cable support system,combining cables of 6.3 m and 10.3 m in length,effectively prevented convergence of surrounding rock deformation,and the integrated settlement convergence value remained below 300 mm.This study provides an effective scientific basis for resolving large deformation problems in deeply buried soft rocks in western transverse mountain areas.
基金funded by the Scientific and Technological Service Project of CNOOC Tianjin Branch“Research on Rock Mechanical Response Characteristics and Fracture Extension Mechanism of Metamorphic Reservoirs in the Southwest Ring of the Archaean Group in the Bozhong Sag,Bohai Bay Basin”.CCL2022TJX0NST1189.
文摘Hydraulic fracturing is a mature and effectivemethod for deep oil and gas production,which provides a foundation for deep oil and gas production.One of the key aspects of implementing hydraulic fracturing technology lies in understanding mechanics response characteristics of rocks in deep reservoirs under complex stress conditions.In this work,based on outcrop core samples,high-stress triaxial compression tests were designed to simulate the rock mechanics behavior of deep reservoirs in Bozhong Sag.Additionally,this study analyzes the deformation and damage law for rock under different stress conditions.Wherein,with a particular focus on combining energy dissipation theory to further understand damage law for deep reservoirs.The experimental results show that regardless of stress conditions,the process of deformation/failure of deep-seated reservoirs goes through five stages:Fracture compaction,newfracture formation,stable fracture expansion,unstable fracture expansion,and post-peak residual deformation.Under different stress conditions,the energy change laws of specimens are similar.The energy dissipation process of rocks corresponds closely to the trend of deformation-failure curve,then displays distinctive stage characteristics.Wherein,in stage of rock fracture compaction,the input energy curve is approximately coincident with the elastic strain energy curve,while the dissipation energy curve remains near zero.With the increase of strain,the growth rate of elastic strain energy increases gradually,but with the deformation entering the crack propagation stage,the growth rate of elastic strain energy slows down and the dissipation energy increases gradually.Finally,in the post-peak stage,rock fracture releases a lot of energy,which leads to the sharp decline of elastic strain energy curve.In addition,the introduction of damage variable D quantifies the analysis of the extent of failure for rocks.During the process of increasing strain,rock damage exhibits nonlinear growth with increasing stress.
文摘In clinical practice, dentists sometimes encounter phenomena that cannot be explained by modern western medical concepts;for example, the patient’s medical symptoms improve by bringing medicines or dentures close to the body. Although it seems difficult to completely elucidate the mechanism through modern western medicine, it can be explained using quantum mechanics. The quantum, the smallest unit of matter composition, exhibits wave-particle duality. The fact that symptoms can be improved simply by bringing dentures or medicines closer to the body indicates that the waves emitted by dentures or medicines interfere with the pathological waves emitted by the pathological site. Thus, the pathological waves are deformed and lead to a change in symptoms. In this way, quantum theory can explain phenomena that are difficult to elucidate in conventional medicine, which are encountered in clinical practice. So far, the author has presented a case of difficulty in raising the upper limb where the symptoms improved without the need for dentures in the mouth by adjusting the dentures outside the mouth. This time, the author would like to introduce a case which the patient’s knee pain improved by adjusting the dentures outside the mouth.
文摘Planck scale plays a vital role in describing fundamental forces. Space time describes strength of fundamental force. In this paper, Einstein’s general relativity equation has been described in terms of contraction and expansion forces of space time. According to this, the space time with Planck diameter is a flat space time. This is the only diameter of space time that can be used as signal transformation in special relativity. This space time diameter defines the fundamental force which belongs to that space time. In quantum mechanics, this space time diameter is only the quantum of space which belongs to that particular fundamental force. Einstein’s general relativity equation and Planck parameters of quantum mechanics have been written in terms of equations containing a constant “K”, thus found a new equation for transformation of general relativity space time in to quantum space time. In this process of synchronization, there is a possibility of a new fundamental force between electromagnetic and gravitational forces with Planck length as its space time diameter. It is proposed that dark matter is that fundamental force carrying particle. By grand unification equation with space-time diameter, we found a coupling constant as per standard model “α<sub>s</sub>” for that fundamental force is 1.08 × 10<sup>-23</sup>. Its energy calculated as 113 MeV. A group of experimental scientists reported the energy of dark matter particle as 17 MeV. Thorough review may advance science further.
基金the National Natural Science Foundation of China(No.11572210).
文摘The finite element method (FEM) plays a valuable role in computer modeling and is beneficial to the mechanicaldesign of various structural parts. However, the elements produced by conventional FEM are easily inaccurate andunstable when applied. Therefore, developing new elements within the framework of the generalized variationalprinciple is of great significance. In this paper, an 8-node plane hybrid finite element with 15 parameters (PHQ8-15β) is developed for structural mechanics problems based on the Hellinger-Reissner variational principle.According to the design principle of Pian, 15 unknown parameters are adopted in the selection of stress modes toavoid the zero energy modes.Meanwhile, the stress functions within each element satisfy both the equilibrium andthe compatibility relations of plane stress problems. Subsequently, numerical examples are presented to illustrate theeffectiveness and robustness of the proposed finite element. Numerical results show that various common lockingbehaviors of plane elements can be overcome. The PH-Q8-15β element has excellent performance in all benchmarkproblems, especially for structures with varying cross sections. Furthermore, in bending problems, the reasonablemesh shape of the new element for curved edge structures is analyzed in detail, which can be a useful means toimprove numerical accuracy.
文摘The SI system of units in rotational mechanics yields correct numerical results, but it produces physically incorrect units of measure in many cases. SI units also violate the principle of general covariance—the general rule for defining continuous coordinates and units in mathematics and mathematical physics. After 30+ years of wrestling with these problems, the ultimate authority on units of measure has declared that Newton–meter and Joule are not equivalent in rotational mechanics, as they are in the rest of physics. This article proposes a simple modification to SI units called “Nonstandard International units” (“NI units”) until a better name is agreed upon. NI units yield correct numerical results and physically correct units of measure, and they satisfy the principle of general covariance. The main obstacle to the adoption of NI units is the consensus among users that the radius of rotation should have the unit meter because the radius can be measured with a ruler. NI units assigned to radius should have units meter/radian because the radius is a conversion factor between angular size and circumferential length, as in arclength = rθ. To manage the social consensus behind SI units, the author recommends retaining SI units as they are, and informing users who want correct units that NI units solve the technical problems of SI units.
基金supported by PTDC-01778/2022-NeuroDev3D,iNOVA4Health(UIDB/04462/2020 and UIDP/04462/2020)LS4FUTURE(LA/P/0087/2020)。
文摘Cells,tissues,and organs are constantly subjected to the action of mechanical forces from the extracellular environment-and the nervous system is no exception.Cell-intrinsic properties such as membrane lipid composition,abundance of mechanosensors,and cytoskeletal dynamics make cells more or less likely to sense these forces.Intrinsic and extrinsic cues are integrated by cells and this combined information determines the rate and dynamics of membrane protrusion growth or retraction(Yamada and Sixt,2019).Cell protrusions are extensions of the plasma membrane that play crucial roles in diverse contexts such as cell migration and neuronal synapse formation.In the nervous system,neurons are highly dynamic cells that can change the size and number of their pre-and postsynaptic elements(called synaptic boutons and dendritic spines,respectively),in response to changes in the levels of synaptic activity through a process called plasticity.Synaptic plasticity is a hallmark of the nervous system and is present throughout our lives,being required for functions like memory formation or the learning of new motor skills(Minegishi et al.,2023;Pillai and Franze,2024).
文摘Precipitation strengthening is a crucial microscopic mechanism for enhancing the strength of magnesium alloys. In order to elucidate the influence of precipitation on the microscopic deformation mechanisms and macroscopic mechanical response of magnesium alloys under cyclic loading conditions, we employed a crystal plasticity model to analyze the stress-strain curves, specific crystal plane diffraction intensities, and the temporal evolution of various microscopic deformation mechanisms and twinning volume fractions for an extruded magnesium alloy, AXM10304, containing coherent precipitates. The research findings indicate that precipitation does not fundamentally alter the microscopic mechanisms of this alloy. However, it hinders twinning during the compression stage, mildly promotes detwinning during the tension stage, and enhances tension secondary hardening by elevating the difficulty of activation of the prismatic slip.
基金Science and Technology Key Project of Beijing Polytechnic(Project number:2024X008-KXZ)。
文摘This paper explores the integration of simulation technology in Engineering Mechanics(EM)teaching in vocational colleges.A case study was conducted using the tensile test as an example,and digital resources,such as colored Mises stress nephograms,were obtained.These resources were integrated into the original curriculum to conduct teaching experiments.The results show that the use of digital resources significantly improved the quality of teaching in EM.The integration of simulation technology in EM teaching provides a promising direction for the improvement of vocational education and the cultivation of high-quality skilled talents.The development and application of more simulation-based teaching cases should be studied by scholars.
基金financially supported by the Agency for Science,Technology and Research(A*Star),Republic of Singapore,under the Aerospace Consortium Cycle 12“Characterization of the Effect of Wire and Powder Deposited Materials”(No.A1815a0078)。
文摘The feasibility of manufacturing Ti-6Al-4V samples through a combination of laser-aided additive manufacturing with powder(LAAM_(p))and wire(LAAM_(w))was explored.A process study was first conducted to successfully circumvent defects in Ti-6Al-4V deposits for LAAM_(p) and LAAM_(w),respectively.With the optimized process parameters,robust interfaces were achieved between powder/wire deposits and the forged substrate,as well as between powder and wire deposits.Microstructure characterization results revealed the epitaxial prior β grains in the deposited Ti-6Al-4V,wherein the powder deposit was dominated by a finerα′microstructure and the wire deposit was characterized by lamellar α phases.The mechanisms of microstructure formation and correlation with mechanical behavior were analyzed and discussed.The mechanical properties of the interfacial samples can meet the requirements of the relevant Aerospace Material Specifications(AMS 6932)even without post heat treatment.No fracture occurred within the interfacial area,further suggesting the robust interface.The findings of this study highlighted the feasibility of combining LAAM_(p) and LAAM_(w) in the direct manufacturing of Ti-6Al-4V parts in accordance with the required dimensional resolution and deposition rate,together with sound strength and ductility balance in the as-built condition.
基金supported by the National Science and Technology Major Project,China(No.2019-VI-0004-0118)the National Natural Science Foundation of China(No.51771152)the National Key R&D Program of China(No.2018YFB1106800)。
文摘Microstructure,texture,and mechanical properties of the extruded Mg-2.49Nd-1.82Gd-0.2Zn-0.2Zr alloy were investigated at different extrusion temperatures(260 and 320℃),extrusion ratios(10:1,15:1,and 30:1),and extrusion speeds(3 and 6 mm/s).The experimental results exhibited that the grain sizes after extrusion were much finer than that of the homogenized alloy,and the second phase showed streamline distribution along the extrusion direction(ED).With extrusion temperature increased from 260 to 320℃,the microstructure,texture,and mechanical properties of alloys changed slightly.The dynamic recrystallization(DRX)degree and grain sizes enhanced as the extrusion ratio increased from 10:1 to 30:1,and the strength gradually decreased but elongation(EL)increased.With the extrusion speed increased from 3 to 6 mm/s,the grain sizes and DRX degree increased significantly,and the samples presented the typical<2111>-<1123>rare-earth(RE)textures.The alloy extruded at 260℃ with extrusion ratio of 10:1 and extrusion speed of 3 mm/s showed the tensile yield strength(TYS)of 213 MPa and EL of 30.6%.After quantitatively analyzing the contribution of strengthening mechanisms,it was found that the grain boundary strengthening and dislocation strengthening played major roles among strengthening contributions.These results provide some guidelines for enlarging the industrial application of extruded Mg-RE alloy.
基金2024 Key Project of Teaching Reform Research and Practice in Higher Education in Henan Province“Exploration and Practice of Training Model for Outstanding Students in Basic Mechanics Discipline”(2024SJGLX094)Henan Province“Mechanics+X”Basic Discipline Outstanding Student Training Base2024 Research and Practice Project of Higher Education Teaching Reform in Henan University of Science and Technology“Optimization and Practice of Ability-Oriented Teaching Mode for Computational Mechanics Course:A New Exploration in Cultivating Practical Simulation Engineers”(2024BK074)。
文摘This paper takes the assessment and evaluation of computational mechanics course as the background,and constructs a diversified course evaluation system that is student-centered and integrates both quantitative and qualitative evaluation methods.The system not only pays attention to students’practical operation and theoretical knowledge mastery but also puts special emphasis on the cultivation of students’innovative abilities.In order to realize a comprehensive and objective evaluation,the assessment and evaluation method of the entropy weight model combining TOPSIS(Technique for Order Preference by Similarity to Ideal Solution)multi-attribute decision analysis and entropy weight theory is adopted,and its validity and practicability are verified through example analysis.This method can not only comprehensively and objectively evaluate students’learning outcomes,but also provide a scientific decision-making basis for curriculum teaching reform.The implementation of this diversified course evaluation system can better reflect the comprehensive ability of students and promote the continuous improvement of teaching quality.
文摘The complex morphological,anatomical,physiological,and chemical mechanisms within the aging brain have been the hot topic of research for centuries.The aging process alters the brain structure that affects functions and cognitions,but the worsening of such processes contributes to the pathogenesis of neurodegenerative disorders,such as Alzheimer's disease.Beyond these observable,mild morphological shifts,significant functional modifications in neurotransmission and neuronal activity critically influence the aging brain.Understanding these changes is important for maintaining cognitive health,especially given the increasing prevalence of age-related conditions that affect cognition.This review aims to explore the age-induced changes in brain plasticity and molecular processes,differentiating normal aging from the pathogenesis of Alzheimer's disease,thereby providing insights into predicting the risk of dementia,particularly Alzheimer's disease.
基金supported by the Natural Science Foundation of Fujian Province,No.2021J02035(to WX).
文摘Regulated cell death is a form of cell death that is actively controlled by biomolecules.Several studies have shown that regulated cell death plays a key role after spinal cord injury.Pyroptosis and ferroptosis are newly discovered types of regulated cell deaths that have been shown to exacerbate inflammation and lead to cell death in damaged spinal cords.Autophagy,a complex form of cell death that is interconnected with various regulated cell death mechanisms,has garnered significant attention in the study of spinal cord injury.This injury triggers not only cell death but also cellular survival responses.Multiple signaling pathways play pivotal roles in influencing the processes of both deterioration and repair in spinal cord injury by regulating pyroptosis,ferroptosis,and autophagy.Therefore,this review aims to comprehensively examine the mechanisms underlying regulated cell deaths,the signaling pathways that modulate these mechanisms,and the potential therapeutic targets for spinal cord injury.Our analysis suggests that targeting the common regulatory signaling pathways of different regulated cell deaths could be a promising strategy to promote cell survival and enhance the repair of spinal cord injury.Moreover,a holistic approach that incorporates multiple regulated cell deaths and their regulatory pathways presents a promising multi-target therapeutic strategy for the management of spinal cord injury.
基金Project (51074178) supported by the National Natural Science Foundation of ChinaProject (20110162120056) supported by the Special Research Fund for the Doctoral Program of Higher Education of ChinaProject (2011QNZT089) supported by the Young Teachers Boosting Special Subject of Central South University,China
文摘The effects of induction unloading such as drilling, blasting, lancing and water-infusion softening on weakening of rock mechanics properties were investigated. Three stress paths were chosen as test schemes corresponding to the triaxial compressive test, pre-peak and post-peak unloading the confining pressure tests. The results show that compression deformation is the main cause of rock failure under loading condition. However, the strong dilatation leads to the rock failure along unloading direction. Rock failure happens even under little axial stress with confining pressure unloading. Poisson ratio increases with the decrease of confining pressure during the process of unloading. Elastic modulus increases slowly along with the decline of confining pressure, but decreases rapidly when unloaded to yielding strength. It shows that the weakening rate of rock intensity tends to be faster with easily failure under the unloading condition.
基金The Doctoral Program of Central South University (No. 2010ybfz048)the National High Technology Research and Development Program of China (863 Program) (No. 2007AA021908)
文摘In order to analyze the pavement stress caused by vehicle bumping at an approach slab, a simplified four-wheeled bi- axle vehicle-moving model is proposed. The effect of damping and vibration reduction in the process of vehicle-moving is not considered. Based on the position change of vehicle wheels at the approach slab, the vehicle dynamic vibration equations are summarized. Meanwhile, the undetermined coefficients of the vibration equations are obtained using the boundary and initial conditions of the vehicle. The analytical motion solutions of rear and front wheels at different stages are concluded. Consequently, a four-wheeled vehicle model is developed and vibration equations are provided, which can be used to analyze the impact of complicated stress on pavement. The results show that the excessive stress and stress concentration will occur at the approach slab, and it needs to be strengthened.
基金This work was financially supported by the National Natural Science fund of China (No.50274058).
文摘Damage statistical mechanics model of horizontal section height in the top caving was constructed in the paper. The influence factors including supporting pressure, dip angle and characteristic of coal on horizontal section height were analyzed as well. By terms of the practice project analysis, the horizontal section height increases with the increase of dip angle β and thickness of coal seam M. Dip angle of coal seam β has tremendous impact on horizontal section height, while thickness of coal seam M has slight impact. When thickness of coal seam is below 10m, horizontal section height increases sharply. While thickness exceeds 15m, it is not major factor influencing on horizontal section height any long.