期刊文献+
共找到1,289篇文章
< 1 2 65 >
每页显示 20 50 100
Numerical Simulation of Oil-Water Two-Phase Flow in Low Permeability Tight Reservoirs Based on Weighted Least Squares Meshless Method
1
作者 Xin Liu Kai Yan +3 位作者 Bo Fang Xiaoyu Sun Daqiang Feng Li Yin 《Fluid Dynamics & Materials Processing》 EI 2024年第7期1539-1552,共14页
In response to the complex characteristics of actual low-permeability tight reservoirs,this study develops a meshless-based numerical simulation method for oil-water two-phase flow in these reservoirs,considering comp... In response to the complex characteristics of actual low-permeability tight reservoirs,this study develops a meshless-based numerical simulation method for oil-water two-phase flow in these reservoirs,considering complex boundary shapes.Utilizing radial basis function point interpolation,the method approximates shape functions for unknown functions within the nodal influence domain.The shape functions constructed by the aforementioned meshless interpolation method haveδ-function properties,which facilitate the handling of essential aspects like the controlled bottom-hole flow pressure in horizontal wells.Moreover,the meshless method offers greater flexibility and freedom compared to grid cell discretization,making it simpler to discretize complex geometries.A variational principle for the flow control equation group is introduced using a weighted least squares meshless method,and the pressure distribution is solved implicitly.Example results demonstrate that the computational outcomes of the meshless point cloud model,which has a relatively small degree of freedom,are in close agreement with those of the Discrete Fracture Model(DFM)employing refined grid partitioning,with pressure calculation accuracy exceeding 98.2%.Compared to high-resolution grid-based computational methods,the meshless method can achieve a better balance between computational efficiency and accuracy.Additionally,the impact of fracture half-length on the productivity of horizontal wells is discussed.The results indicate that increasing the fracture half-length is an effective strategy for enhancing production from the perspective of cumulative oil production. 展开更多
关键词 Weighted least squares method meshless method numerical simulation of low permeability tight reservoirs oil-water two-phase flow fracture half-length
下载PDF
Development of the theory and technology for low permeability reservoirs in China 被引量:7
2
作者 HU Wenrui WEI Yi BAO Jingwei 《Petroleum Exploration and Development》 2018年第4期685-697,共13页
The development theories of low-permeability oil and gas reservoirs are refined, the key development technologies are summarized, and the prospect and technical direction of sustainable development are discussed based... The development theories of low-permeability oil and gas reservoirs are refined, the key development technologies are summarized, and the prospect and technical direction of sustainable development are discussed based on the understanding and research on developed low-permeability oil and gas resources in China. The main achievements include:(1) the theories of low-permeability reservoir seepage, dual-medium seepage, relative homogeneity, etc.(2) the well location optimization technology combining favorable area of reservoir with gas-bearing prediction and combining pre-stack with post-stack;(3) oriented perforating multi-fracture, multistage sand adding, multistage temporary plugging, vertical well multilayer, horizontal and other fracturing techniques to improve productivity of single well;(4) the technology of increasing injection and keeping pressure, such as overall decreasing pressure, local pressurization, shaped charge stamping and plugging removal, fine separate injection, mild advanced water injection and so on;(5) enhanced recovery technology of optimization of injection-production well network in horizontal wells. To continue to develop low-permeability reserves economically and effectively, there are three aspects of work to be done well:(1) depending on technical improvement, continue to innovate new technologies and methods, establish a new mode of low quality reservoir development economically, determine the main technical boundaries and form replacement technology reserves of advanced development;(2) adhering to the management system of low cost technology & low cost, set up a complete set of low-cost dual integration innovation system through continuous innovation in technology and management;(3) striving for national preferential policies. 展开更多
关键词 low permeability oil and gas reservoir SEEPAGE THEORY volume FRACTURING WATERFLOODING technology WELL location optimization horizontal WELL technical DEVELOPMENT direction
下载PDF
The Relationship between Fractures and Tectonic Stress Field in the Extra Low-Permeability Sandstone Reservoir at the South of Western Sichuan Depression 被引量:13
3
作者 曾联波 漆家福 李跃纲 《Journal of China University of Geosciences》 SCIE CSCD 2007年第3期223-231,共9页
The formation and distribution of fractures are controlled by paleotectonic stress field, and their preservative status and effects on development are dominated by the modern stress field. Since Triassic, it has exper... The formation and distribution of fractures are controlled by paleotectonic stress field, and their preservative status and effects on development are dominated by the modern stress field. Since Triassic, it has experienced four tectonic movements and developed four sets of tectonic fractures in the extra low-permeability sandstone reservoir at the south of western Sichuan depression. The strikes of fractures are in the S-N, NE-SW, E-W, and NW-SE directions respectively. At the end of Triassic, under the horizontal compression tectonic stress field, for which the maximum principal stress direction was NW.SE, the fractures were well developed near the S-N faults and at the end of NE-SW faults, because of their stress concentration. At the end of Cretaceous, in the horizontal compression stress fields of the NE-SW direction, the stress was obviously lower near the NE-SW faults, thus, fractures mainly developed near the S-N faults. At the end of Neogene-Early Pleistocene, under the horizontal compression tectonic stress fields of E-W direction, stress concentrated near the NE-SW faults and fractures developed at these places, especially at the end of the NE-SE faults, the cross positions of NE-SW, and S-N faults. Therefore, fractures developed mostly near S-N faults and NE-SW faults. At the cross positions of the above two sets of faults, the degree of development of the fractures was the highest. Under the modern stress field of the NW-SE direction, the NW-SE fractures were mainly the seepage ones with tensional state, the best connectivity, the widest aperture, the highest permeability, and the minimum opening pressure. 展开更多
关键词 fracture tectonic stress field extra low-permeability reservoir south of western Sichuan depression
下载PDF
The tectonic fracture modeling of an ultra-low permeability sandstone reservoir based on an outcrop analogy: A case study in the Wangyao Oilfield of Ordos Basin, China 被引量:7
4
作者 Zhao Xiaoming Liu Li +2 位作者 Hu Jialiang Zhou Xiaojun Li Min 《Petroleum Science》 SCIE CAS CSCD 2014年第3期363-375,共13页
Due to inherent limits of data acquisition and geophysical data resolution, there are large uncertainties in the characterization of subsurface fractures. However, outcrop analogies can provide qualitative and quantit... Due to inherent limits of data acquisition and geophysical data resolution, there are large uncertainties in the characterization of subsurface fractures. However, outcrop analogies can provide qualitative and quantitative information on a large number of fractures, based on which the accuracy of subsurface fracture characterization can be improved. Here we take the tectonic fracture modeling of an ultra-low permeability sandstone reservoir based on an outcrop analogy, a case study of the Chang6t~ Formation of the Upper Triassic Yanchang Group of the Wangyao Oilfield in the Ordos Basin of China. An outcrop at the edge of the basin is a suitable analog for the reservoir, but the prerequisite is that they must have equivalent previous stress fields, similar final structural characteristics, relative timing and an identical depositional environment and diagenesis. The relationship among fracture density, rock type and bed thickness based on the outcrop is one of the most important fracture distribution models, and can be used to interpret fracture density in individual wells quantitatively. Fracture orientation, dip, geometry and scale, also should be described and measured in the outcrop, and can be used together with structure restoration and single well fracture density interpretation to guide fracture intensity prediction on bed surfaces and to constrain the construction of the 3D fracture geometry model of the subsurface reservoir. The application of the above principles shows the outcrop-based tectonic fracture models of the target ultra-low permeability sandstone reservoir are consistent with fractures inferred from microseismic interpretation and tracer tests. This illustrated that the fracture modeling based on the outcrop analogy is reliable and can reduce the uncertainty in stochastic fracture modeling. 展开更多
关键词 Ultra-low permeability sandstone tectonic fracture modeling outcrop analog subsurface reservoir 3D modeling
下载PDF
An overview of efficient development practices at low permeability sandstone reservoirs in China 被引量:1
5
作者 Bingyu Ji Jichao Fang 《Energy Geoscience》 2023年第3期149-157,共9页
Low permeability sandstone reservoirs in China typically have more complicated geological conditions, pore structures, and flow characteristics as compared to medium-to-high-permeability sandstone reservoirs. Traditio... Low permeability sandstone reservoirs in China typically have more complicated geological conditions, pore structures, and flow characteristics as compared to medium-to-high-permeability sandstone reservoirs. Traditional geological and seepage theories, and engineering methods are not applicable to the development of these low permeability reservoirs, and wells drilled into them often produce oil and gas at very low rates. Recent breakthroughs in reservoir exploitation technology have greatly improved the productivity of low permeability reservoirs, making them the primary target for oil exploration and extraction in China. The development theories and practices applied to low permeability reservoirs in China are reviewed in this study— based on relevant geological and engineering practices, including drilling, fracturing, recovery, and surface engineering. A unique series of technological advances that aid the development of low permeability reservoirs in China are summarized here. This study may serve as a meaningful guide in achieving scale efficiency for the development of low permeability reservoirs. 展开更多
关键词 Well pattern FRACTURING Development model reservoir description low permeability reservoir
下载PDF
Method of moderate water injection and its application in ultra-low permeability oil reservoirs of Yanchang Oilfield, NW China 被引量:2
6
作者 WANG Xiangzeng DANG Hailong GAO Tao 《Petroleum Exploration and Development》 2018年第6期1094-1102,共9页
To explore the method of improving development effect and solving the problem of water breakthrough and water out for ultralow permeability fractured reservoirs, an indoor evaluation method of dynamic imbibition for f... To explore the method of improving development effect and solving the problem of water breakthrough and water out for ultralow permeability fractured reservoirs, an indoor evaluation method of dynamic imbibition for fracture-matrix system was established taking the Chang 8 reservoir in southern Yanchang Oilfield as a research target. Key factors for the imbibition effect were obtained, an imbibition's rate expression was obtained, a model considering the double effects of imbibition-displacement was built and optimal injection and production parameters for the research area were obtained as well. The results show that an optimum displacement rate that maximizes the oil displacement efficiency exists in the water displacing oil process, and the optimal displacing rate becomes smaller as the permeability decreases. The imbibition displacement efficiency increases as the reservoir quality index and water wettability index of rock become bigger. But the larger the initial water saturation or oil-water viscosity ratio is, the smaller the imbibition displacement efficiency is. The optimal injection-production ratio for the Chang 8 reservoir of southern Yanchang Oilfield is 0.95, and the predicted recovery is 17.2% when the water cut is 95%, it is 2.9% higher than the recovery of conventional injection-production ratio 1.2. By using the moderate water injection technique based on the double effects of imbibition-displacement mechanism, the water injection development effect for the ultra-low permeability fractured reservoirs can be improved significantly. 展开更多
关键词 ultra-low permeability OIL reservoir fractured OIL reservoir water-flooding IMBIBITION displacement water-flooding recovery Yanchang OILFIELD
下载PDF
Fracture Distribution Characteristics within Low-Permeability Reservoirs:Cases Studies from Three Types of Oil-bearing Basins,China 被引量:1
7
作者 Zeng Lianbo 《工程科学(英文版)》 2006年第4期83-91,共9页
The permeability or/and porosity in low-permeability reservoirs mainly depends on fracture system. Wthin this kind of low-permeability reservior, fractures play a very important role on exploration and development. Be... The permeability or/and porosity in low-permeability reservoirs mainly depends on fracture system. Wthin this kind of low-permeability reservior, fractures play a very important role on exploration and development. Because there are so many differences, such as basin properties and tectonic characteristics, among the eastern,western and central basins, the types and distribution characteristics of fractures are also obviously different. Quantitative information on fracture distribution is very important. Through the contrastive study of 7 oilfield, the differences and distribution characteristics of fractures in three types of oil-bearing basins are summarized. Due to the different geological conditions and stress state during the formation of fractures, the fracture systems in three types of basins are also different. Fractures are mainly composed of tectonic fractutres related to normal faultes in eastern basins, related to folds and reverse faultes in western basins, and regional fractures which widely distributed not only in outcrops but also at depth of the relatively undeformed strata in central basins. So, besides jointed-fractures, we can often see faulted-fractures similar to normal faults in eastern basins and similar to reverse faults in western basins. According to statistical data, fracture spacing generally has a lognormal distribution and is linearly proportional to layer thickness. The development degree of fractures is controlled by lithology, bed thickness, sedimentary microfacies and faults or folds, etc. The permeability, aperture and connectedness of fractures are related to the modern stress field. Though there are 3-4 sets of fractures in a oilfield, the fractures parallel to the maximum principal stress direction are main for the pattern arrangement of low-permeability reservoirs. 展开更多
关键词 渗透性 孔隙率 石油 地质条件 断裂
下载PDF
Fractured Low-permeability Reservoirs in China
8
作者 Zeng Lianbo and Tian Chonglu(University of Petroleum, Beijing) 《China Oil & Gas》 CAS 1998年第3期158-159,共2页
关键词 FRACTURE low-permeability reservoir FEATURE
下载PDF
A Comprehensive Evaluation Method for Low-permeability Reservoirs 被引量:5
9
作者 Zeng Lianbo Wang Zhengguo Zhang Guibin 《Petroleum Science》 SCIE CAS CSCD 2005年第4期9-13,共5页
According to the geological characteristics and their influential factors of the low-permeability reservoirs, a comprehensive method for evaluation of low-permeability reservoirs is put forward. The method takes a mat... According to the geological characteristics and their influential factors of the low-permeability reservoirs, a comprehensive method for evaluation of low-permeability reservoirs is put forward. The method takes a matrix system as the basis, a fracture system as the focus and a stress field system as the restricted factor. It can objectively reflect not only the storage capability and seepage capability of low-permeability reservoirs, but also the effect on development as well. At the same time, it can predict the seepage characteristics at different development stages and provide a reasonable geological basis for the development of low-permeability reservoirs. 展开更多
关键词 Matrix system fracture system stress field system low-permeability reservoir comprehensive evaluation
下载PDF
An evaluation method of volume fracturing effects for vertical wells in low permeability reservoirs
10
作者 ZHANG Anshun YANG Zhengming +6 位作者 LI Xiaoshan XIA Debin ZHANG Yapu LUO Yutian HE Ying CHEN Ting ZHAO Xinli 《Petroleum Exploration and Development》 2020年第2期441-448,共8页
To evaluate the fracturing effect and dynamic change process after volume fracturing with vertical wells in low permeability oil reservoirs, an oil-water two-phase flow model and a well model are built. On this basis,... To evaluate the fracturing effect and dynamic change process after volume fracturing with vertical wells in low permeability oil reservoirs, an oil-water two-phase flow model and a well model are built. On this basis, an evaluation method of fracturing effect based on production data and fracturing fluid backflow data is established, and the method is used to analyze some field cases. The vicinity area of main fracture after fracturing is divided into different stimulated regions. The permeability and area of different regions are used to characterize the stimulation strength and scale of the fracture network. The conductivity of stimulated region is defined as the product of the permeability and area of the stimulated region. Through parameter sensitivity analysis, it is found that half-length of the fracture and the permeability of the core area mainly affect the flow law near the well, that is, the early stage of production;while matrix permeability mainly affects the flow law at the far end of the fracture. Taking a typical old well in Changqing Oilfield as an example, the fracturing effect and its changes after two rounds of volume fracturing in this well are evaluated. It is found that with the increase of production time after the first volume fracturing, the permeability and conductivity of stimulated area gradually decreased, and the fracturing effect gradually decreased until disappeared;after the second volume fracturing, the permeability and conductivity of stimulated area increased significantly again. 展开更多
关键词 volume fracturing fracturing effect evaluation fracturing area CONDUCTIVITY low permeability reservoir vertical well
下载PDF
A new method of building permeability model in low-permeability reservoir numerical simulation
11
作者 Yong-Chao Xue Lin-Song Cheng Lei Su 《Natural Science》 2010年第2期120-123,共4页
Aiming at solving the problem that big differ-ence exists between logging permeability and true permeability of micro-fractured low-permeability sand reservoir, this paper puts forward a new method to revise logging p... Aiming at solving the problem that big differ-ence exists between logging permeability and true permeability of micro-fractured low-permeability sand reservoir, this paper puts forward a new method to revise logging per-meability by using primiparity data of oil field. This method has been successfully applied to revise logging permeability of micro-fractured low-permeability sand reservoir in Baiyushan area of Jing’An oil field, which shows that the method is reliable because the geological model building through the permeability which has been handled by this method accords with the real reservoir significantly. 展开更多
关键词 LOGGING permeability Micro-fractured low-permeability reservoir REVISE
下载PDF
Test evaluation for vertical fracture wells in low permeability reservoir
12
作者 CUI Li-ping HE Shun-li 《Journal of Energy and Power Engineering》 2009年第9期32-35,共4页
As flow environment is poor in low permeability reservoirs, wells are always fractured in order to gain better economic benefits. Well testing analysis is very necessary for fracturing wells. However, available test a... As flow environment is poor in low permeability reservoirs, wells are always fractured in order to gain better economic benefits. Well testing analysis is very necessary for fracturing wells. However, available test analysis methods are of slow fitting speed and low fitting precision. In this paper, we first use a comprehensive evaluation method of analytical well testing, numerical well testing and well testing design. Many dynamic parameters such as fracture length, fracture conductivity, skin factor, etc are obtained. An example to illustrate accurate results of this method is given. 展开更多
关键词 test evaluation fracture wells low permeability reservoir fracturing effect
下载PDF
Quantifying a critical marl thickness for vertical fracture extension using field data and numerical experiments 被引量:2
13
作者 Filiz Afsar Elco Luijendijk 《Geoscience Frontiers》 SCIE CAS CSCD 2019年第6期2135-2145,共11页
In fractured reservoirs characterized by low matrix permeability,fracture networks control the main fluid flow paths.However,in layered reservoirs,the vertical extension of fractures is often restricted to single laye... In fractured reservoirs characterized by low matrix permeability,fracture networks control the main fluid flow paths.However,in layered reservoirs,the vertical extension of fractures is often restricted to single layers.In this study,we explored the effect of changing marl/shale thickness on fracture extension using comprehensive field data and numerical modeling.The field data were sampled from coastal exposures of Liassic limestone-marl/shale alternations in Wales and Somerset(Bristol Channel Basin,UK).The vertical fracture traces of more than 4000 fractures were mapped in detail.Six sections were selected to represent a variety of layer thicknesses.Besides the field data also thin sections were analyzed.Numerical models of fracture extension in a two-layer limestone-marl system were based on field data and laboratory measurements of Young's moduli.The modeled principal stress magnitude σ3 along the lithological contact was used as an indication for fracture extension through marls.Field data exhibit good correlation(R^2=0.76) between fracture extension and marl thickness,the thicker the marl layer the fewer fractures propagate through.The model results show that almost no tensile stress reaches the top of the marl layer when the marls are thicker than 30 cm.For marls that are less than 20 cm,the propagation of stress is more dependent on the stiffness of the marls.The higher the contrast between limestone and marl stiffness the lower the stress that is transmitted into the marl layer.In both model experiments and field data the critical marl thickness for fracture extension is ca.15-20 cm.This quantification of critical marl thicknesses can be used to improve predictions of fracture networks and permeability in layered rocks.Up-or downsampling methods often ignore spatially continuous impermeable layers with thicknesses that are under the detection limit of seismic data.However,ignoring these layers can lead to overestimates of the overall permeability.Therefore,the understanding of how fractures propagate and terminate through impermeable layers will help to improve the characterization of conventional reservoirs. 展开更多
关键词 Boundary element modelling Marl/limestone multilayer Layer thickness and stiffness control permeability fractured reservoirs
下载PDF
Success in Developing Low-permeable Reservoir by Using Modern Fracturing Technique
14
《China Oil & Gas》 CAS 1994年第2期64-64,共1页
A research project"Overall Fracturing Refor-mation and Evaluation for Sanjianfang Low-permeable Oil Formations,Shanshan Oilfield'has been jointly accomplished by Branch of CNPC Research Institute of Explorati... A research project"Overall Fracturing Refor-mation and Evaluation for Sanjianfang Low-permeable Oil Formations,Shanshan Oilfield'has been jointly accomplished by Branch of CNPC Research Institute of Exploration and Develop-ment and Turpan-Hami Oilfields,and was ap-praised by CNPC recently.This technique improved the development result of Shanshan oil field.Productivity index was increased by 2.28 times and production rate for a signle well was doubled.A total of 117 production wells were fractured from May,1991 to April,1993,and 371900 tons of crude Wwas increased,with an accumulative value of 197 million Yuan. 展开更多
关键词 PERMEABLE FRACTURING low MODERN reservoir SUCCESS Technique Using by in
下载PDF
Fracturing-flooding technology for low permeability reservoirs:A review
15
作者 Nianyin Li Shijie Zhu +8 位作者 Yue Li Jingrui Zhao Bo Long Fei Chen Erzhen Wang Wentao Feng Yanan Hu Shubei Wang Chen Jiang 《Petroleum》 EI CSCD 2024年第2期202-215,共14页
The development of low-permeability oil and gas resources presents a significant challenge to traditional development methods.To address the problem of“no injection and no production”in low-permeability reservoirs,a... The development of low-permeability oil and gas resources presents a significant challenge to traditional development methods.To address the problem of“no injection and no production”in low-permeability reservoirs,a novel fracture-injection-production integration technology named fracturing-flooding has been proposed by oilfield sites.This technology combines the advantages of conventional fracturing,water flooding,and chemical flooding,resulting in improved reservoir physical properties,increased injection,replenished energy,and increased oil displacement efficiency.The technology is especially suitable for low-permeability reservoirs that suffer from lack of energy,and strong heterogeneity.Fracturing-flooding technology has shown significant results and broad development prospects in some oilfields in China.This paper analyzes the development status of fracturing-flooding technology from its development history,technical mechanism,technical characteristics,process flow,types of fracturing and oil displacement fluids,and field applications.Physical and numerical simulations of fracturingflooding technology are also summarized.The results suggest that fracturing-flooding technology is more effective than conventional fracturing,water flooding,and chemical flooding in stimulating lowpermeability tight reservoirs and improving oil recovery.Moreover,it has a high input-output ratio and can be utilized for future reservoir stimulation and transformation. 展开更多
关键词 Fracturing-flooding Enhanced oil recovery low permeability reservoirs Water flooding INJECTION Chemical flooding FRACTURING
原文传递
The distribution rule and seepage effect of the fractures in the ultra-low permeability sandstone reservoir in east Gansu Province,Ordos Basin 被引量:22
16
作者 ZENG LianBo1,GAO ChunYu2,QI JiaFu1,WANG YongKang2,LI Liang2 & QU XueFeng2 1 State Key Laboratory of Petroleum Resource and Prospecting,China University of Petroleum,Beijing 102249,China 2 Changqing Oilfield Branch,PetroChina,Xi’an 163517,China 《Science China Earth Sciences》 SCIE EI CAS 2008年第S2期44-52,共9页
To study the impact of the fractures on development in the ultra-low permeability sandstone reservoir of the Yangchang Formation of the Upper Triassic in the Ordos Basin,data on outcrops,cores,slices,well logging and ... To study the impact of the fractures on development in the ultra-low permeability sandstone reservoir of the Yangchang Formation of the Upper Triassic in the Ordos Basin,data on outcrops,cores,slices,well logging and experiments are utilized to analyze the cause of the formation of the fractures,their distribution rules and the control factors and discuss the seepage flow effect of the fractures. In the studied area developed chiefly high-angle tectonic fractures and horizontal bedding fractures,inter-granular fractures and grain boundary fractures as well. Grain boundary fractures and intragranular fractures serve as vital channels linking intragranular pores and intergranular solution pores in the reservoir matrix,thus providing a good connectivity between the pores in the ultra-low perme-ability sandstone reservoir. The formation of fractures and their distribution are influenced by such external and internal factors as the palaeo-tectonic stress field,the reservoir lithological character,the thickness of the rock layer and the anisotropy of a layer. The present-day stress field influences the preservative state of fractures and their seepage flow effect. Under the tec-tonic effect of both the Yanshan and Himalayan periods,in this region four sets of fractures are distributed,respectively assuming the NE-SW,NW-SE,nearly E-W and nearly S-N orientations,but,due to the effect of the rock anisotropy of the rock formation,in some part of it two groups of nearly orthogonal fractures are chiefly distributed. Under the effect of the present-day stress field,the fractures that assume the NE-SW direction have a good connectivity,big apertures,a high permeability and a minimum starting pressure,all of which are main advantages of the seepage fractures in this region. With the development of oilfields,the permeability of the fractures of dif-ferent directions will have a dynamic change. 展开更多
关键词 fracture genetic type distribution characteristic SEEPAGE flow effect ultra-low permeability SandSTONE reservoir ORDOS Basin
原文传递
Simplified graphical correlation for determining flow rate in tight gas wells in the Sulige gas field 被引量:1
17
作者 Xiao Wei Wu Xiaodong Liu Xiaojuan 《Petroleum Science》 SCIE CAS CSCD 2008年第3期258-262,共5页
The Sulige tight gas reservoir is characterized by low-pressure, low-permeability and lowabundance. During production, gas flow rate and reservoir pressure decrease sharply; and in the shut- in period, reservoir press... The Sulige tight gas reservoir is characterized by low-pressure, low-permeability and lowabundance. During production, gas flow rate and reservoir pressure decrease sharply; and in the shut- in period, reservoir pressure builds up slowly. Many conventional methods, such as the indicative curve method, systematic analysis method and numerical simulation, are not applicable to determining an appropriate gas flow rate. Static data and dynamic performance show permeability capacity, kh is the most sensitive factor influencing well productivity, so criteria based on kh were proposed to classify vertical wells. All gas wells were classified into 4 groups. A multi-objective fuzzy optimization method, in which dimensionless gas flow rate, period of stable production, and recovery at the end of the stable production period were selected as optimizing objectives, was established to determine the reasonable range of gas flow rate. In this method, membership functions of above-mentioned optimizing factors and their weights were given. Moreover, to simplify calculation and facilitate field use, a simplified graphical illustration (or correlation) was given for the four classes of wells. Case study illustrates the applicability of the proposed method and graphical correlation, and an increase in cumulative gas production up to 37% is achieved and the well can produce at a constant flow rate for a long time. 展开更多
关键词 low-permeability reservoir sand thickness fuzzy optimization method gas flow rate
下载PDF
胜利油田GF84区块CCUS气窜封堵技术及其应用 被引量:3
18
作者 王涛 张星 +3 位作者 马坤玉 韦雪 唐培忠 张代森 《大庆石油地质与开发》 CAS 北大核心 2024年第1期128-134,共7页
胜利油田GF84区块为低渗透油藏,采出程度较低,CO_(2)驱是提高该区块采收率的有效措施之一。在前期开发中注采井之间已形成明显的气窜通道,现阶段亟需进行气窜封堵,提高CO_(2)驱波及系数,实现均衡驱替。通过分析GF84区块气窜特征与开发矛... 胜利油田GF84区块为低渗透油藏,采出程度较低,CO_(2)驱是提高该区块采收率的有效措施之一。在前期开发中注采井之间已形成明显的气窜通道,现阶段亟需进行气窜封堵,提高CO_(2)驱波及系数,实现均衡驱替。通过分析GF84区块气窜特征与开发矛盾,将气窜类型划分为“裂缝型气窜”和“基质型气窜”,并制定了“裂缝封堵”和“基质调剖”的治理策略。在明确气窜特征的基础上,通过室内实验研发了硅盐树脂堵剂、CO_(2)气溶性发泡剂和高温冻胶堵剂,并形成了“硅盐树脂裂缝封堵+CO_(2)气溶性发泡剂、高温冻胶基质调剖”化学封堵分级调控技术。结果表明,该技术在GF84区块成功应用4口井,其中硅盐树脂裂缝封堵2口井,CO_(2)气溶性发泡剂基质调剖2口井,措施有效率100%,有效期在0.5 a以上。研究成果可为低渗透油田CO_(2)驱开发提供技术支撑。 展开更多
关键词 低渗透油藏 CO_(2)驱 气窜 裂缝封堵 基质调剖 胜利油田
下载PDF
碎软低渗煤储层强化与煤层气地面开发技术进展 被引量:2
19
作者 桑树勋 皇凡生 +7 位作者 单衍胜 周效志 刘世奇 韩思杰 郑司建 刘统 王梓良 王峰斌 《煤炭科学技术》 EI CAS CSCD 北大核心 2024年第1期196-210,共15页
我国碎软低渗煤储层分布广泛,然而由于其煤体松软、破碎、渗透性差,常规的直井/水平井煤储层直接压裂技术应用于碎软低渗煤储层强化及其煤层气地面开发的效果并不理想,碎软低渗煤储层煤层气的高效开发是制约我国煤层气产业大规模发展以... 我国碎软低渗煤储层分布广泛,然而由于其煤体松软、破碎、渗透性差,常规的直井/水平井煤储层直接压裂技术应用于碎软低渗煤储层强化及其煤层气地面开发的效果并不理想,碎软低渗煤储层煤层气的高效开发是制约我国煤层气产业大规模发展以及煤矿瓦斯高效治理的重要技术瓶颈。在系统分析我国碎软低渗煤储层特征及煤层气地面开发中存在的问题基础上,以水平井为基础井型,围绕间接压裂、应力释放和先固结后压裂3种不同的技术方向,梳理了目前碎软低渗煤储层强化与煤层气地面开发技术进展。归纳评述了以顶板间接压裂、夹矸层间接压裂以及硬煤分层间接压裂为内涵的间接压裂煤层气开发技术,以水力喷射造穴、气体动力造穴、扩孔+水力喷射+流体加卸载诱导失稳造穴、水力割缝为不同应力释放方式的应力释放煤层气开发技术,以及先微生物诱导碳酸钙固结碎软煤储层再进行水力压裂的先固结后压裂煤层气开发技术。间接压裂技术的工程实践探索已有较多积累,在地质条件适宜地区对碎软低渗煤储层强化取得了较好效果,而以应力释放为代表的碎软低渗煤储层强化新技术探索已取得重大进展,并进入工程试验和验证阶段。水平井应力释放技术针对碎软低渗煤储层特性和新的开发原理,其对储层改造潜力更大、煤层气开发效果会更好。基于水平井应力释放技术,围绕扩大应力释放范围、提高煤层气开发效果以及实现煤与煤层气共采3个方面,对碎软低渗煤储层强化及煤层气地面开发技术的发展趋势进行了展望,以期为改善我国碎软低渗煤储层增产改造效果以及提高煤层气单井产量提供参考。 展开更多
关键词 煤层气 碎软低渗煤储层 储层强化技术 地面开发 水力压裂
下载PDF
低渗透油藏压驱技术现状及发展趋势 被引量:3
20
作者 许冬进 吴应松 +3 位作者 熊齐 濮新宏 冯建设 岳世俊 《断块油气田》 CAS CSCD 北大核心 2024年第3期533-540,546,共9页
压驱技术是近年来针对低渗透油藏高效开发而提出的一种增加储层动用程度、提高原油采收率的储层改造技术。压驱技术先通过高压小排量向地层注入大量携带化学剂的液体,然后进行焖井,通过压力的扩散和化学剂与裂缝孔隙中的原油充分置换而... 压驱技术是近年来针对低渗透油藏高效开发而提出的一种增加储层动用程度、提高原油采收率的储层改造技术。压驱技术先通过高压小排量向地层注入大量携带化学剂的液体,然后进行焖井,通过压力的扩散和化学剂与裂缝孔隙中的原油充分置换而达到增产的目的。文中结合国内外压驱技术的最新研究动态,从压驱技术现状、设计原则、设计方法、应用分析及发展趋势等方面展开论述,重点分析了压驱技术与水力压裂技术的区别、增产机理和设计方法以及现场应用效果等,同时也指出了当前压驱技术理论研究方面的欠缺,展望了该技术的发展趋势和应用前景。 展开更多
关键词 低渗透油藏 压驱 提高采收率 压驱注水
下载PDF
上一页 1 2 65 下一页 到第
使用帮助 返回顶部