期刊文献+
共找到7,670篇文章
< 1 2 250 >
每页显示 20 50 100
Experimental Investigation on Condensate Revaporization During Gas Injection Development in Fractured Gas Condensate Reservoirs
1
作者 Lei Zhang Yingxu He +3 位作者 Jintao Wu Haojun Wu Lei Huang Linna Sun 《哈尔滨工程大学学报(英文版)》 CSCD 2024年第3期575-582,共8页
The gas field in the Bohai Bay Basin is a fractured metamorphic buried-hill reservoir with dual-media characteristics. The retrograde vaporization mechanism observed in this type of gas condensate reservoir differs si... The gas field in the Bohai Bay Basin is a fractured metamorphic buried-hill reservoir with dual-media characteristics. The retrograde vaporization mechanism observed in this type of gas condensate reservoir differs significantly from that observed in sand gas condensate reservoirs. However, studies on improving the recovery of fractured gas condensate reservoirs are limited;thus, the impact of retrograde vaporization on condensate within fractured metamorphic buried-hill reservoirs remains unclear. To address this gap, a series of gas injection experiments are conducted in pressure-volume-temperature(PVT) cells and long-cores to investigate the retrograde vaporization effect of condensate using different gas injection media in fractured gas condensate reservoirs. We analyze the variation in condensate volume, gas-to-oil ratio, and condensate recovery during gas injection and examine the influence of various gas injection media(CO_(2), N_(2), and dry gas) under different reservoir properties and varying gas injection times. The results demonstrate that the exchange of components between injected gas and condensate significantly influences condensate retrograde vaporization in the formation. Compared with dry gas injection and N_(2) injection,CO_(2) injection exhibits a superior retrograde vaporization effect. At a CO_(2) injection volume of 1 PV, the percentage shrinkage volume of condensate is 13.82%. Additionally, at the maximum retrograde condensation pressure, CO_(2) injection can increase the recovery of condensate by 22.4%. However, the condensate recovery is notably lower in fractured gas condensate reservoirs than in homogeneous reservoirs, owing to the creation of dominant gas channeling by fractures, which leads to decreased condensate recovery. Regarding gas injection timing, the effect of gas injection at reservoir pressure on improving condensate recovery is superior to that of gas injection at the maximum retrograde condensation pressure. This research provides valuable guidance for designing gas injection development plans and dynamic tracking adjustments for fractured gas condensate reservoirs. 展开更多
关键词 Buried-hill fractured reservoir Gas condensate reservoir Retrograde condensation CO_(2)injection Retrograde vaporization
下载PDF
Evaluation of Well Spacing for Primary Development of Fractured Horizontal Wells in Tight Sandstone Gas Reservoirs
2
作者 Fang Li Juan Wu +3 位作者 Haiyong Yi Lihong Wu Lingyun Du Yuan Zeng 《Fluid Dynamics & Materials Processing》 EI 2024年第5期1015-1030,共16页
Methods for horizontal well spacing calculation in tight gas reservoirs are still adversely affected by the complexity of related control factors,such as strong reservoir heterogeneity and seepage mechanisms.In this s... Methods for horizontal well spacing calculation in tight gas reservoirs are still adversely affected by the complexity of related control factors,such as strong reservoir heterogeneity and seepage mechanisms.In this study,the stress sensitivity and threshold pressure gradient of various types of reservoirs are quantitatively evaluated through reservoir seepage experiments.On the basis of these experiments,a numerical simulation model(based on the special seepage mechanism)and an inverse dynamic reserve algorithm(with different equivalent drainage areas)were developed.The well spacing ranges of Classes I,II,and III wells in the Q gas field are determined to be 802–1,000,600–662,and 285–400 m,respectively,with their average ranges as 901,631,and 342.5 m,respectively.By considering both the pairs of parallel well groups and series well groups as examples,the reliability of the calculation results is verified.It is shown that the combination of the two models can reduce errors and provide accurate results. 展开更多
关键词 Well spacing for primary development tight gas reservoir fractured horizontal well threshold pressure gradient stress sensitivity
下载PDF
A multi-mechanism numerical simulation model for CO_(2)-EOR and storage in fractured shale oil reservoirs
3
作者 Yuan-Zheng Wang Ren-Yi Cao +3 位作者 Zhi-Hao Jia Bin-Yu Wang Ming Ma Lin-Song Cheng 《Petroleum Science》 SCIE EI CAS CSCD 2024年第3期1814-1828,共15页
Under the policy background and advocacy of carbon capture,utilization,and storage(CCUS),CO_(2)-EOR has become a promising direction in the shale oil reservoir industry.The multi-scale pore structure distribution and ... Under the policy background and advocacy of carbon capture,utilization,and storage(CCUS),CO_(2)-EOR has become a promising direction in the shale oil reservoir industry.The multi-scale pore structure distribution and fracture structure lead to complex multiphase flow,comprehensively considering multiple mechanisms is crucial for development and CO_(2) storage in fractured shale reservoirs.In this paper,a multi-mechanism coupled model is developed by MATLAB.Compared to the traditional Eclipse300 and MATLAB Reservoir Simulation Toolbox(MRST),this model considers the impact of pore structure on fluid phase behavior by the modified Peng—Robinson equation of state(PR-EOS),and the effect simultaneously radiate to Maxwell—Stefan(M—S)diffusion,stress sensitivity,the nano-confinement(NC)effect.Moreover,a modified embedded discrete fracture model(EDFM)is used to model the complex fractures,which optimizes connection types and half-transmissibility calculation approaches between non-neighboring connections(NNCs).The full implicit equation adopts the finite volume method(FVM)and Newton—Raphson iteration for discretization and solution.The model verification with the Eclipse300 and MRST is satisfactory.The results show that the interaction between the mechanisms significantly affects the production performance and storage characteristics.The effect of molecular diffusion may be overestimated in oil-dominated(liquid-dominated)shale reservoirs.The well spacing and injection gas rate are the most crucial factors affecting the production by sensitivity analysis.Moreover,the potential gas invasion risk is mentioned.This model provides a reliable theoretical basis for CO_(2)-EOR and sequestration in shale oil reservoirs. 展开更多
关键词 CO_(2)-EOR CO_(2)storage Shale oil reservoir Complex fracture model Multiple mechanisms
下载PDF
The application study on the multi-scales integrated prediction method to fractured reservoir description 被引量:17
4
作者 陈双全 曾联波 +3 位作者 黄平 孙绍寒 张琬璐 李向阳 《Applied Geophysics》 SCIE CSCD 2016年第1期80-92,219,共14页
In this paper,we implement three scales of fracture integrated prediction study by classifying it to macro-( 1/4/λ),meso-( 1/100λ and 1/4λ) and micro-( 1/100λ) scales.Based on the multi-scales rock physics ... In this paper,we implement three scales of fracture integrated prediction study by classifying it to macro-( 1/4/λ),meso-( 1/100λ and 1/4λ) and micro-( 1/100λ) scales.Based on the multi-scales rock physics modelling technique,the seismic azimuthal anisotropy characteristic is analyzed for distinguishing the fractures of meso-scale.Furthermore,by integrating geological core fracture description,image well-logging fracture interpretation,seismic attributes macro-scale fracture prediction and core slice micro-scale fracture characterization,an comprehensive multi-scale fracture prediction methodology and technique workflow are proposed by using geology,well-logging and seismic multi-attributes.Firstly,utilizing the geology core slice observation(Fractures description) and image well-logging data interpretation results,the main governing factors of fracture development are obtained,and then the control factors of the development of regional macro-scale fractures are carried out via modelling of the tectonic stress field.For the meso-scale fracture description,the poststack geometric attributes are used to describe the macro-scale fracture as well,the prestack attenuation seismic attribute is used to predict the meso-scale fracture.Finally,by combining lithological statistic inversion with superposed results of faults,the relationship of the meso-scale fractures,lithology and faults can be reasonably interpreted and the cause of meso-scale fractures can be verified.The micro-scale fracture description is mainly implemented by using the electron microscope scanning of cores.Therefore,the development of fractures in reservoirs is assessed by valuating three classes of fracture prediction results.An integrated fracture prediction application to a real field in Sichuan basin,where limestone reservoir fractures developed,is implemented.The application results in the study area indicates that the proposed multi-scales integrated fracture prediction method and the technique procedureare able to deal with the strong heterogeneity and multi-scales problems in fracture prediction.Moreover,the multi-scale fracture prediction technique integrated with geology,well-logging and seismic multi-information can help improve the reservoir characterization and sweet-spots prediction for the fractured hydrocarbon reservoirs. 展开更多
关键词 Multi-scales fracture prediction HETEROGENEITY reservoir characterization Sweet-spots prediction
下载PDF
A review of reservoir damage during hydraulic fracturing of deep and ultra-deep reservoirs 被引量:2
5
作者 Kun Zhang Xiong-Fei Liu +6 位作者 Dao-Bing Wang Bo Zheng Tun-Hao Chen Qing Wang Hao Bai Er-Dong Yao Fu-Jian Zhou 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期384-409,共26页
Deep and ultra-deep reservoirs have gradually become the primary focus of hydrocarbon exploration as a result of a series of significant discoveries in deep hydrocarbon exploration worldwide.These reservoirs present u... Deep and ultra-deep reservoirs have gradually become the primary focus of hydrocarbon exploration as a result of a series of significant discoveries in deep hydrocarbon exploration worldwide.These reservoirs present unique challenges due to their deep burial depth(4500-8882 m),low matrix permeability,complex crustal stress conditions,high temperature and pressure(HTHP,150-200℃,105-155 MPa),coupled with high salinity of formation water.Consequently,the costs associated with their exploitation and development are exceptionally high.In deep and ultra-deep reservoirs,hydraulic fracturing is commonly used to achieve high and stable production.During hydraulic fracturing,a substantial volume of fluid is injected into the reservoir.However,statistical analysis reveals that the flowback rate is typically less than 30%,leaving the majority of the fluid trapped within the reservoir.Therefore,hydraulic fracturing in deep reservoirs not only enhances the reservoir permeability by creating artificial fractures but also damages reservoirs due to the fracturing fluids involved.The challenging“three-high”environment of a deep reservoir,characterized by high temperature,high pressure,and high salinity,exacerbates conventional forms of damage,including water sensitivity,retention of fracturing fluids,rock creep,and proppant breakage.In addition,specific damage mechanisms come into play,such as fracturing fluid decomposition at elevated temperatures and proppant diagenetic reactions at HTHP conditions.Presently,the foremost concern in deep oil and gas development lies in effectively assessing the damage inflicted on these reservoirs by hydraulic fracturing,comprehending the underlying mechanisms,and selecting appropriate solutions.It's noteworthy that the majority of existing studies on reservoir damage primarily focus on conventional reservoirs,with limited attention given to deep reservoirs and a lack of systematic summaries.In light of this,our approach entails initially summarizing the current knowledge pertaining to the types of fracturing fluids employed in deep and ultra-deep reservoirs.Subsequently,we delve into a systematic examination of the damage processes and mechanisms caused by fracturing fluids within the context of hydraulic fracturing in deep reservoirs,taking into account the unique reservoir characteristics of high temperature,high pressure,and high in-situ stress.In addition,we provide an overview of research progress related to high-temperature deep reservoir fracturing fluid and the damage of aqueous fracturing fluids to rock matrix,both artificial and natural fractures,and sand-packed fractures.We conclude by offering a summary of current research advancements and future directions,which hold significant potential for facilitating the efficient development of deep oil and gas reservoirs while effectively mitigating reservoir damage. 展开更多
关键词 Artificial fracture Deep and ultra-deep reservoir fracture conductivity fracturing fluid Hydraulic fracturing reservoir damage
下载PDF
Microscopic characteristics of tight sandstone reservoirs and their effects on the imbibition efficiency of fracturing fluids:A case study of the Linxing area,Ordos Basin 被引量:1
6
作者 Qihui Li Dazhong Ren +6 位作者 Hu Wang Haipeng Sun Tian Li Hanpeng Zhang Zhen Yan Rongjun Zhang Le Qu 《Energy Geoscience》 EI 2024年第3期328-338,共11页
The Linxing area within the Ordos Basin exhibits pronounced reservoir heterogeneity and intricate micro-pore structures,rendering it susceptible to water-blocking damage during imbibition extraction.This study delved ... The Linxing area within the Ordos Basin exhibits pronounced reservoir heterogeneity and intricate micro-pore structures,rendering it susceptible to water-blocking damage during imbibition extraction.This study delved into the traits of tight sandstone reservoirs in the 8th member of the Shihezi Formation(also referred to as the He 8 Member)in the study area,as well as their effects on fracturing fluid imbibition.Utilizing experimental techniques such as nuclear magnetic resonance(NMR),high-pressure mercury intrusion(HPMI),and gas adsorption,this study elucidated the reservoir characteristics and examined the factors affecting the imbibition through imbibition experiments.The findings reveal that:①The reservoir,with average porosity of 8.40%and average permeability of 0.642×10^(-3)μm^(2),consists principally of quartz,feldspar,and lithic fragments,with feldspathic litharenite serving as the primary rock type and illite as the chief clay mineral;②Nano-scale micro-pores and throats dominate the reservoir,with dissolution pores and intercrystalline pores serving as predominant pore types,exhibiting relatively high pore connectivity;③Imbibition efficiency is influenced by petrophysical properties,clay mineral content,and microscopic pore structure.Due to the heterogeneity of the tight sandstone reservoir,microscopic factors have a more significant impact on the imbibition efficiency of fracturing fluids;④A comparative analysis shows that average pore size correlates most strongly with imbibition efficiency,followed by petrophysical properties and clay mineral content.In contrast,the pore type has minimal impact.Micropores are vital in the imbibition process,while meso-pores and macro-pores offer primary spaces for imbibition.This study offers theoretical insights and guidance for enhancing the post-fracturing production of tight sandstone reservoirs by examining the effects of these factors on the imbibition efficiency of fracturing fluids in tight sandstones. 展开更多
关键词 Tight sandstone Ordos Basin fracturing fluid Microscopic reservoir characteristics Imbibition efficiency Influencing factor
下载PDF
Prediction of Fracture-Cavity System in Carbonate Reservoir: A Case Study in the Tahe Oilfield 被引量:16
7
作者 WangShixing GuanLuping ZhuHailong 《Applied Geophysics》 SCIE CSCD 2004年第1期56-62,共7页
The carbonate rocks in Tahe oilfield, which suffered from multi-period polycycle karstification and structure deformation, are heterogeneous reservoirs that are rich in pores, cavities,and fractures. The reservoirs ar... The carbonate rocks in Tahe oilfield, which suffered from multi-period polycycle karstification and structure deformation, are heterogeneous reservoirs that are rich in pores, cavities,and fractures. The reservoirs are diversified in scale, space configuration, and complex in filling. For this kind of reservoir, a suite of seismic prestack or poststack prediction techniques has been developed based on the separation of seismic wave fields. Through cross-verification of the estimated results,a detailed description of palaeogeomorphology and structural features such as pores, cavities, and fractures in unaka has been achieved, the understanding of the spatial distribution of reservoir improved. 展开更多
关键词 fracturE CAVERN CARBONATE reservoir and prediction
下载PDF
Borehole stability in naturally fractured reservoirs luring production tests 被引量:5
8
作者 Zhang Fuxiang Zhang Shaoli +2 位作者 Jiang Xuehai Lu Rende Chen Mian 《Petroleum Science》 SCIE CAS CSCD 2008年第3期247-250,共4页
Based on the plane of weakness theory, a model for predicting borehole stability in fractured reservoirs under different stress states was estiblisted and the equations for solving borehole stability were developed. T... Based on the plane of weakness theory, a model for predicting borehole stability in fractured reservoirs under different stress states was estiblisted and the equations for solving borehole stability were developed. The minimum downhole pressures required to maintain borehole stability under different natural fracture occurrences were calculated by using the data from a well in the Tazhong (central Tarim) area, Tarim Basin, west China. Several conclusions were drawn for naturally fractured reservoirs with a dip angle from less than 10° to greater than 30°. Application in three wells in the Tazhong area indicates that this model is practically useful. 展开更多
关键词 Production test fractured reservoir borehole stability fracture dip azimuth of fracture
下载PDF
Modeling flow in naturally fractured reservoirs: effect of fracture aperture distribution on dominant sub-network for flow 被引量:6
9
作者 J. Gong W. R. Rossen 《Petroleum Science》 SCIE CAS CSCD 2017年第1期138-154,共17页
Fracture network connectivity and aperture (or conductivity) distribution are two crucial features controlling flow behavior of naturally fractured reservoirs. The effect of connectivity on flow properties is well d... Fracture network connectivity and aperture (or conductivity) distribution are two crucial features controlling flow behavior of naturally fractured reservoirs. The effect of connectivity on flow properties is well documented. In this paper, however, we focus here on the influence of fracture aperture distribution. We model a two dimensional fractured reservoir in which the matrix is impermeable and the fractures are well connected. The fractures obey a power-law length distribution, as observed in natural fracture networks. For the aperture distribution, since the information from subsurface fracture networks is limited, we test a number of cases: log-normal distributions (from narrow to broad), power-law distributions (from narrow to broad), and one case where the aperture is pro- portional to the fracture length. We find that even a well- connected fracture network can behave like a much sparser network when the aperture distribution is broad enough (c~ 〈 2 for power-law aperture distributions and σ ≥ 0.4 for log-normal aperture distributions). Specifically, most fractures can be eliminated leaving the remaining dominant sub-network with 90% of the permeability of the original fracture network. We determine how broad the aperture distribution must be to approach this behavior and the dependence of the dominant sub-network on the parameters of the aperture distribution. We also explore whether one can identify the dominant sub-network without doing flow calculations. 展开更多
关键词 Naturally fractured reservoir Non-uniformflow Effective permeability PERCOLATION Waterflood
下载PDF
Fractured reservoir modeling by discrete fracture network and seismic modeling in the Tarim Basin,China 被引量:4
10
作者 Sam Zandong Sun Zhou Xinyuan +3 位作者 Yang Haijun Wang Yueying WangDi Liu Zhishui 《Petroleum Science》 SCIE CAS CSCD 2011年第4期433-445,共13页
Fractured reservoirs are an important target for oil and gas exploration in the Tarim Basin and the prediction of this type of reservoir is challenging.Due to the complicated fracture system in the Tarim Basin,the con... Fractured reservoirs are an important target for oil and gas exploration in the Tarim Basin and the prediction of this type of reservoir is challenging.Due to the complicated fracture system in the Tarim Basin,the conventional AVO inversion method based on HTI theory to predict fracture development will result in some errors.Thus,an integrated research concept for fractured reservoir prediction is put forward in this paper.Seismic modeling plays a bridging role in this concept,and the establishment of an anisotropic fracture model by Discrete Fracture Network (DFN) is the key part.Because the fracture system in the Tarim Basin shows complex anisotropic characteristics,it is vital to build an effective anisotropic model.Based on geological,well logging and seismic data,an effective anisotropic model of complex fracture systems can be set up with the DFN method.The effective elastic coefficients,and the input data for seismic modeling can be calculated.Then seismic modeling based on this model is performed,and the seismic response characteristics are analyzed.The modeling results can be used in the following AVO inversion for fracture detection. 展开更多
关键词 fractured reservoir Discrete fracture Network (DFN) equivalent medium seismic modeling azimuth-angle gathers
下载PDF
Anisotropic characteristics of electrical responses of fractured reservoir with multiple sets of fractures 被引量:3
11
作者 Shen Jinsong Su Benyu Guo Naichuan 《Petroleum Science》 SCIE CAS CSCD 2009年第2期127-138,共12页
In fractured reservoirs, the fractures not but also form the main flow channels which connect productivity of reservoirs. However, because of the only provide the storage space for hydrocarbons, the pores of the matri... In fractured reservoirs, the fractures not but also form the main flow channels which connect productivity of reservoirs. However, because of the only provide the storage space for hydrocarbons, the pores of the matrix, so fractures dominate the heterogeneity and randomness of the distribution of fractures, exploration and evaluation of fractured reservoirs is still one of the most difficult problems in the oil industry. In recent years, seismic anisotropy has been applied to the assessment of fractured formations, whereas electrical anisotropy which is more intense in fractured formations than seismic anisotropy has not been studied or used so extensively. In this study, fractured reservoir models which considered multiple sets of fractures with smooth and partly closed, rough surfaces were established based on the fractures and pore network, and the vertical and horizontal electrical resistivities were derived as a function of the matrix and fracture porosities according to Ohm's law. By using the anisotropic resistivity equations, variations of the electrical anisotropy of three types of fractured models under the conditions of free pressure and confining pressure were analyzed through the variations of the exerted pressure, matrix porosity, fracture aperture and formation water resistivity. The differences of the vertical and horizontal resistivities and the anisotropy between the connected and non-connected fractures were also analyzed. It is known from the simulated results that an increase of the confining pressure causes a decrease of electrical anisotropy because of the elasticity of the closed fractures and the decrease of the fracture aperture. For a fixed fracture porosity, the higher the matrix porosity, the weaker the electrical anisotropy in the rock formation. 展开更多
关键词 fractured reservoir partly closed fracture electrical anisotropy fracture roughness
下载PDF
Blasingame production decline type curves for analysing a multi-fractured horizontal well in tight gas reservoirs 被引量:4
12
作者 魏明强 段永刚 +3 位作者 陈伟 方全堂 李政澜 郭希冉 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第2期394-401,共8页
Production decline analysis has been considered as an important method to obtain the flow parameters, reservoir properties and original gas in place. Although advanced Blasingame production decline analysis methods fo... Production decline analysis has been considered as an important method to obtain the flow parameters, reservoir properties and original gas in place. Although advanced Blasingame production decline analysis methods for vertical wells, fractured wells and horizontal wells are widely used, limited study has conducted on Blasingame production decline type curves for multi-fractured horizontal well(MFHW). Based on the perpendicular bisection(PEBI) grids, a numerical model was developed and the solution was obtained using control volume finite element method and the fully implicit method. Blasingame production decline-type curves of the infinitely conductive MFHW were plotted through computer programming. A field case was presented to analyse and verify the model developed. Five flow regimes, including early formation linear flow, early radial flow, compound linear flow, transient flow and pseudo-radial flow, are recognized. Fracture spacing is the main factor that affects early radial flow, compound linear flow and transient flow, the distance from the well to the circular boundary affects the pseudo-radial flow, and the type curves are also significantly affected by the formation permeability, fracture number and fracture half-length. The validation of field case suggests that the Blasingame production decline type curves proposed in this work can be applied to the production decline analysis for MFHW in tight gas reservoirs. 展开更多
关键词 tight gas reservoir fractured horizontal well unstructured grid production decline type curves
下载PDF
Predicting the height of water-flow fractured zone during coal mining under the Xiaolangdi Reservoir 被引量:6
13
作者 XU Zhimin SUN Yajun +2 位作者 DONG Qinghong ZHANG Guowei LI Shi 《Mining Science and Technology》 EI CAS 2010年第3期434-438,共5页
It is very important to determine the extent of the fractured zone through which water can flow before coal mining under the water bodies.This paper deals with methods to obtain information about overburden rock failu... It is very important to determine the extent of the fractured zone through which water can flow before coal mining under the water bodies.This paper deals with methods to obtain information about overburden rock failure and the development of the fractured zone while coal mining in Xin'an Coal Mine.The risk of water inrush in this mine is great because 40%of the mining area is under the Xiaolangdi reservoir.Numerical simulations combined with geophysical methods were used in this paper to obtain the development law of the fractured zone under different mining conditions.The comprehensive geophysical method described in this paper has been demonstrated to accurately predict the height of the water-flow fractured zone.Results from the new model, which created from the results of numerical simulations and field measurements,were successfully used for making decisions in the Xin'an Coal Mine when mining under the Xiaolangdi Reservoir.Industrial scale experiments at the number 11201,14141 and 14191 working faces were safely carried out.These achievements provide a successful background for the evaluation and application of coal mining under large reservoirs. 展开更多
关键词 coal mining under reservoir water-flow fractured zone development law water inrush of mine predicting model
下载PDF
Techniques for improving fracture-controlled stimulated reservoir volume in ultra-deep fractured tight reservoirs: A case study of Kuqa piedmont clastic reservoirs, Tarim Basin, NW China 被引量:3
14
作者 LEI Qun YANG Zhanwei +8 位作者 WENG Dingwei LIU Hongtao GUAN Baoshan CAI Bo FU Haifeng LIU Zhaolong DUAN Yaoyao LIANG Tiancheng MA Zeyuan 《Petroleum Exploration and Development》 CSCD 2022年第5期1169-1184,共16页
Based on analysis of the reasons for low efficiency and low production after fracturing of some wells in the ultra-deep fractured tight reservoirs of the Kuqa piedmont zone, Tarim Basin and the matching relationship b... Based on analysis of the reasons for low efficiency and low production after fracturing of some wells in the ultra-deep fractured tight reservoirs of the Kuqa piedmont zone, Tarim Basin and the matching relationship between the in-situ stress field and natural fractures, technological methods for creating complex fracture networks are proposed. Through theoretical study and large-scale physical simulation experiments, the mechanical conditions for forming complex fracture network in the Kuqa piedmont ultra-deep reservoirs are determined. The effectiveness of temporary plugging and diversion, and multi-stage fracturing to activate natural fractures and consequently realize multi-stage diversion is verified. The coupling effect of hydraulic fractures and natural fractures activating each other and resulting in "fracture swarms" is observed. These insights provide theoretical support for improving fracture-controlled stimulated reservoir volume(FSRV) in ultra-deep tight reservoirs. In addition, following the concept of volume fracturing technology and based on the results of fracture conductivity experiments of different processes, fracturing technologies such as multi-stage fracture-network acid fracturing, "multi-stage temporary plugging + secondary fracturing", fracturing of multiple small layers by vertically softness-and-hardness-oriented subdivision, and weighted-fluid refracturing are proposed to increase the FSRV. New environment-friendly weighted-fluid with low cost and new fracturing fluid system with low viscosity and high proppant-carrying capacity are also developed. These techniques have achieved remarkable results in field application. 展开更多
关键词 ultra-deep reservoir tight reservoir natural fracture fracture-controlled reservoir volume temporary plugging secondary fracturing weighted fracturing fluid
下载PDF
Numerical Fluid Flow Modelling in Multiple Fractured Porous Reservoirs 被引量:6
15
作者 Yatin Suri Sheikh Zahidul Islam +4 位作者 Kirsten Stephen Cameron Donald Michael Thompson Mohamad Ghazi Droubi Mamdud Hossain 《Fluid Dynamics & Materials Processing》 EI 2020年第2期245-266,共22页
This paper compares the fluid flow phenomena occurring within a fractured reservoir for three different fracture models using computational fluid dynamics.The effect of the fracture-matrix interface condition is studi... This paper compares the fluid flow phenomena occurring within a fractured reservoir for three different fracture models using computational fluid dynamics.The effect of the fracture-matrix interface condition is studied on the pressure and velocity distribution.The fracture models were compared based on the variation in pressure and permeability conditions.The model was developed for isotropic and anisotropic permeability conditions.The results suggest that the fracture aperture can have a drastic effect on fluid flow.The porous fracture-matrix interface condition produces more realistic transport of fluids.By increasing the permeability in the isotropic porous matrix,the pressure drop was significantly higher in both the fracture and reservoir region.Under anisotropic conditions in the 3D fractured reservoir,the effect of the higher longitudinal permeability was found to lower the pressure in the fractured reservoir.Depending on the properties of the fractured reservoir,this study can enhance the understanding of fracture-matrix fluid interaction and provide a method for production optimisation. 展开更多
关键词 Parallel plate fractured porous reservoir porous interface ANISOTROPY
下载PDF
Visualization and characterization of experimental hydraulic fractures interacting with karst fracture-cavity distributions
16
作者 Hanzhi Yang Xin Chang +4 位作者 Chunhe Yang Wuhao Guo Lei Wang Guokai Zhao Yintong Guo 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第5期1667-1683,共17页
Karst fracture-cavity carbonate reservoirs,in which natural cavities are connected by natural fractures to form cavity clusters in many circumstances,have become significant fields of oil and gas exploration and explo... Karst fracture-cavity carbonate reservoirs,in which natural cavities are connected by natural fractures to form cavity clusters in many circumstances,have become significant fields of oil and gas exploration and exploitation.Proppant fracturing is considered as the best method for exploiting carbonate reservoirs;however,previous studies primarily focused on the effects of individual types of geological formations,such as natural fractures or cavities,on fracture propagation.In this study,true-triaxial physical simulation experiments were systematically performed under four types of stress difference conditions after the accurate prefabrication of four types of different fracture-cavity distributions in artificial samples.Subsequently,the interaction mechanism between the hydraulic fractures and fracture-cavity structures was systematically analyzed in combination with the stress distribution,cross-sectional morphology of the main propagation path,and three-dimensional visualization of the overall fracture network.It was found that the propagation of hydraulic fractures near the cavity was inhibited by the stress concentration surrounding the cavity.In contrast,a natural fracture with a smaller approach angle(0°and 30°)around the cavity can alleviate the stress concentration and significantly facilitate the connection with the cavity.In addition,the hydraulic fracture crossed the natural fracture at the 45°approach angle and bypassed the cavity under higher stress difference conditions.A new stimulation effectiveness evaluation index was established based on the stimulated reservoir area(SRA),tortuosity of the hydraulic fractures(T),and connectivity index(CI)of the cavities.These findings provide new insights into the fracturing design of carbonate reservoirs. 展开更多
关键词 Karst fracture-cavity reservoir fracturing experiment fracture propagation Cross-sectional morphology Stimulation effectiveness
下载PDF
Numerical simulation of high-resolution azimuthal resistivity laterolog response in fractured reservoirs 被引量:2
17
作者 Shao-Gui Deng Li Li +2 位作者 Zhi-Qiang Li Xu-Quan He Yi-Ren Fan 《Petroleum Science》 SCIE CAS CSCD 2015年第2期252-263,共12页
The high-resolution azimuthal resistivity laterolog response in a fractured formation was numerically simulated using a three-dimensional finite element method. Simulation results show that the azimuthal resistivity i... The high-resolution azimuthal resistivity laterolog response in a fractured formation was numerically simulated using a three-dimensional finite element method. Simulation results show that the azimuthal resistivity is determined by fracture dipping as well as dipping direction, while the amplitude differences between deep and shallow laterolog resistivities are mainly controlled by the former. A linear relationship exists between the corrected apparent conductivities and fracture aperture. With the same fracture aperture, the deep and shallow laterolog resistivities present small values with negative separations for low-angle fractures, while azimuthal resistivities have large variations with positive separations for high-angle fractures that intersect the borehole. For dipping fractures, the variation of the azimuthal resistivity becomes larger when the fracture aperture increases. In addition, for high-angle fractures far from the borehole, a negative separation between the deep and shallow resistivities exists when fracture aperture is large as well as high resistivity contrast exists between bedrock and fracture fluid. The decreasing amplitude of dual laterolog resistivity can indicate the aperture of low-angle fractures, and the variation of the deep azimuthal resistivity can give information of the aperture of high-angle fractures and their position relative to the borehole. 展开更多
关键词 High-resolution azimuthal resistivitylaterolog fractured reservoir fracture dipping anglefracture aperture. fracture dipping direction
下载PDF
Naturally fractured hydrocarbon reservoir simulation by elastic fracture modeling 被引量:1
18
作者 Mehrdad Soleimani 《Petroleum Science》 SCIE CAS CSCD 2017年第2期286-301,共16页
Accurate fluid flow simulation in geologically complex reservoirs is of particular importance in construction of reservoir simulators.General approaches in naturally fractured reservoir simulation involve use of unstr... Accurate fluid flow simulation in geologically complex reservoirs is of particular importance in construction of reservoir simulators.General approaches in naturally fractured reservoir simulation involve use of unstructured grids or a structured grid coupled with locally unstructured grids and discrete fracture models.These methods suffer from drawbacks such as lack of flexibility and of ease of updating.In this study,I combined fracture modeling by elastic gridding which improves flexibility,especially in complex reservoirs.The proposed model revises conventional modeling fractures by hard rigid planes that do not change through production.This is a dubious assumption,especially in reservoirs with a high production rate in the beginning.The proposed elastic fracture modeling considers changes in fracture properties,shape and aperture through the simulation.This strategy is only reliable for naturally fractured reservoirs with high fracture permeability and less permeable matrix and parallel fractures with less cross-connections.Comparison of elastic fracture modeling results with conventional modeling showed that these assumptions will cause production pressure to enlarge fracture apertures and change fracture shapes,which consequently results in lower production compared with what was previously assumed.It is concluded that an elastic gridded model could better simulate reservoir performance. 展开更多
关键词 reservoir performance Discrete fracture model Naturally fractured reservoir History matching Elastic gridding
下载PDF
Hydrocarbon gas huff-n-puff optimization of multiple horizontal wells with complex fracture networks in the M unconventional reservoir
19
作者 Hao-Chuan Zhang Yong Tang +5 位作者 You-Wei He Yong Qin Jian-Hong Luo Yu Sun Ning Wang De-Qiang Wang 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期1018-1031,共14页
The oil production of the multi-fractured horizontal wells(MFHWs) declines quickly in unconventional oil reservoirs due to the fast depletion of natural energy. Gas injection has been acknowledged as an effective meth... The oil production of the multi-fractured horizontal wells(MFHWs) declines quickly in unconventional oil reservoirs due to the fast depletion of natural energy. Gas injection has been acknowledged as an effective method to improve oil recovery factor from unconventional oil reservoirs. Hydrocarbon gas huff-n-puff becomes preferable when the CO_(2) source is limited. However, the impact of complex fracture networks and well interference on the EOR performance of multiple MFHWs is still unclear. The optimal gas huff-n-puff parameters are significant for enhancing oil recovery. This work aims to optimize the hydrocarbon gas injection and production parameters for multiple MFHWs with complex fracture networks in unconventional oil reservoirs. Firstly, the numerical model based on unstructured grids is developed to characterize the complex fracture networks and capture the dynamic fracture features.Secondly, the PVT phase behavior simulation was carried out to provide the fluid model for numerical simulation. Thirdly, the optimal parameters for hydrocarbon gas huff-n-puff were obtained. Finally, the dominant factors of hydrocarbon gas huff-n-puff under complex fracture networks are obtained by fuzzy mathematical method. Results reveal that the current pressure of hydrocarbon gas injection can achieve miscible displacement. The optimal injection and production parameters are obtained by single-factor analysis to analyze the effect of individual parameter. Gas injection time is the dominant factor of hydrocarbon gas huff-n-puff in unconventional oil reservoirs with complex fracture networks. This work can offer engineers guidance for hydrocarbon gas huff-n-puff of multiple MFHWs considering the complex fracture networks. 展开更多
关键词 Unconventional oil reservoir Complex fracture network Hydrocarbon gas huff-n-puff Parameter optimization Numerical simulation
下载PDF
Study on the Impact of Massive Refracturing on the Fracture Network in Tight Oil Reservoir Horizontal Wells
20
作者 Jianchao Shi Yanan Zhang +2 位作者 Wantao Liu Yuliang Su Jian Shi 《Fluid Dynamics & Materials Processing》 EI 2024年第5期1147-1163,共17页
Class III tight oil reservoirs have low porosity and permeability,which are often responsible for low production rates and limited recovery.Extensive repeated fracturing is a well-known technique to fix some of these ... Class III tight oil reservoirs have low porosity and permeability,which are often responsible for low production rates and limited recovery.Extensive repeated fracturing is a well-known technique to fix some of these issues.With such methods,existing fractures are refractured,and/or new fractures are created to facilitate communication with natural fractures.This study explored how different refracturing methods affect horizontal well fracture networks,with a special focus on morphology and related fluid flow changes.In particular,the study relied on the unconventional fracture model(UFM).The evolution of fracture morphology and flow field after the initial fracturing were analyzed accordingly.The simulation results indicated that increased formation energy and reduced reservoir stress differences can promote fracture expansion.It was shown that the length of the fracture network,the width of the fracture network,and the complexity of the fracture can be improved,the oil drainage area can be increased,the distance of oil and gas seepage can be reduced,and the production of a single well can be significantly increased. 展开更多
关键词 Type III tight oil reservoirs refracturing methods horizontal wells fracture network study fracture network evolution
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部