The dynamic frictional behaviors of natural discontinuities(joints,fractures,faults)play an important role in geohazards assessment;however,the mechanisms of the dynamic fault weakening/strengthening are still unclear...The dynamic frictional behaviors of natural discontinuities(joints,fractures,faults)play an important role in geohazards assessment;however,the mechanisms of the dynamic fault weakening/strengthening are still unclear.In this paper,a dynamic shear box was used to perform direct shear tests on saw-cut(planar)and natural(rough)granite fractures,with different normal load oscillation amplitudes.Based on the recorded shear forces and normal displacements,the shear forces,apparent friction coefficients and normal displacements are found to change periodically with oscillated normal loads and are characterized by a series of time shifts.The observed changing patterns are similar for the rough and planar fractures.Compared with the test data under constant normal load(CNL),small/large normal load oscillation amplitude enhances/reduces the peak shear strength,with a critical point.The magnitude of critical normal load oscillation for the rough fractures is smaller than the planer fractures.The results imply that dynamic fault weakening/strengthening can be achieved by both normal load oscillation amplitudes and slip surface topography.The rough fractures with larger normal oscillation amplitude can easily cause frictional weakening under stress disturbance.展开更多
The deformation characters and load status of the blank's potential fracture zone are analyzed at the moment when blank is approaching to punch comer in drawing process of cone shape part. Based on tension instabilit...The deformation characters and load status of the blank's potential fracture zone are analyzed at the moment when blank is approaching to punch comer in drawing process of cone shape part. Based on tension instability theory, the formula for calculating fracture limit load of cone shape part in drawing process is derived. Also, the formula is analyzed and verified by experiment.展开更多
The purpose of the present study was to evaluate the effect ofA1203 content on the fracture property of all-ceramics ZrO2. To improve the all-ceramics ZrO2 restoration mechanics properity ,96 samples containing 0,5,10...The purpose of the present study was to evaluate the effect ofA1203 content on the fracture property of all-ceramics ZrO2. To improve the all-ceramics ZrO2 restoration mechanics properity ,96 samples containing 0,5,10 and 15 wt% of A1203 particles were prepared by cold isostatic pressing (200 MPa) and 1 550 ℃ sintered .The phase was analyzed by X-ray diffraction analysis and the bulk densities of the samples were made using Archimedes principle. Samples were randomly divided into four groups. In each group, 24 specimens were prepared so that the angle between notch and specimen's long axis is 90° and 60°. Notch depths were 1 mm for all samples. Samples were loaded with three-point bending method. 90° cut samples were used to measure fracture toughness while 60°cut samples were used to observe fracture curve by taking points on the fracture extension path under microscope, plotting points on coordinates, generating fitting curve by software "Origin", and analyzing the microstructure of the specimen fracture surfaces by scanning electron microscopy (SEM).The results show that the increment ofA1203 has insignificant effect on the densification of all-ceramic ZrO2.XRD analysis shows that the specimen is comprised of t-ZrO2 and a- A1203 before fracture while fracture surface is m-ZrO2, t-ZrO2 and a-A1203. ZrO2 containing 10% A1203 has the optimum mechanical properties and unconspicuous crack propagation and distribution. The observations may provide a reference for the materials selection, shaoe design, and production orocess of all-ceramic crown and bridge.展开更多
基金the funding support from the National Natural Science Foundation of China (Grant No. 51904359)the Guangdong Provincial Department of Science and Technology (Grant No. 2019ZT08G090)the Open Research Fund of the State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology (CUMT) (Grant No. SKLCRSM20KF002)
文摘The dynamic frictional behaviors of natural discontinuities(joints,fractures,faults)play an important role in geohazards assessment;however,the mechanisms of the dynamic fault weakening/strengthening are still unclear.In this paper,a dynamic shear box was used to perform direct shear tests on saw-cut(planar)and natural(rough)granite fractures,with different normal load oscillation amplitudes.Based on the recorded shear forces and normal displacements,the shear forces,apparent friction coefficients and normal displacements are found to change periodically with oscillated normal loads and are characterized by a series of time shifts.The observed changing patterns are similar for the rough and planar fractures.Compared with the test data under constant normal load(CNL),small/large normal load oscillation amplitude enhances/reduces the peak shear strength,with a critical point.The magnitude of critical normal load oscillation for the rough fractures is smaller than the planer fractures.The results imply that dynamic fault weakening/strengthening can be achieved by both normal load oscillation amplitudes and slip surface topography.The rough fractures with larger normal oscillation amplitude can easily cause frictional weakening under stress disturbance.
基金This project is supported by Doctoral Education Foundation of Ministry ofEducation of China (No.96021602).
文摘The deformation characters and load status of the blank's potential fracture zone are analyzed at the moment when blank is approaching to punch comer in drawing process of cone shape part. Based on tension instability theory, the formula for calculating fracture limit load of cone shape part in drawing process is derived. Also, the formula is analyzed and verified by experiment.
基金Funded by the Technology Department Science Fund of Sichaun(No.2011GZ011520)
文摘The purpose of the present study was to evaluate the effect ofA1203 content on the fracture property of all-ceramics ZrO2. To improve the all-ceramics ZrO2 restoration mechanics properity ,96 samples containing 0,5,10 and 15 wt% of A1203 particles were prepared by cold isostatic pressing (200 MPa) and 1 550 ℃ sintered .The phase was analyzed by X-ray diffraction analysis and the bulk densities of the samples were made using Archimedes principle. Samples were randomly divided into four groups. In each group, 24 specimens were prepared so that the angle between notch and specimen's long axis is 90° and 60°. Notch depths were 1 mm for all samples. Samples were loaded with three-point bending method. 90° cut samples were used to measure fracture toughness while 60°cut samples were used to observe fracture curve by taking points on the fracture extension path under microscope, plotting points on coordinates, generating fitting curve by software "Origin", and analyzing the microstructure of the specimen fracture surfaces by scanning electron microscopy (SEM).The results show that the increment ofA1203 has insignificant effect on the densification of all-ceramic ZrO2.XRD analysis shows that the specimen is comprised of t-ZrO2 and a- A1203 before fracture while fracture surface is m-ZrO2, t-ZrO2 and a-A1203. ZrO2 containing 10% A1203 has the optimum mechanical properties and unconspicuous crack propagation and distribution. The observations may provide a reference for the materials selection, shaoe design, and production orocess of all-ceramic crown and bridge.