Truck frames should be designed and fabricated with enough rigidity to avoid excessive deflections. Finite element analysis (FEA) plays an important role in all stages of frame designs. While being accurate, 3D solid ...Truck frames should be designed and fabricated with enough rigidity to avoid excessive deflections. Finite element analysis (FEA) plays an important role in all stages of frame designs. While being accurate, 3D solid element FEA models are built upon frame configuration details which are not feasible in the preliminary design stage, partially because of limited available design data of frames and heavy computation costs. This research develops 1D beam element FEA models for simulating frame structures. In this paper, the CAD model of a truck frame is first created. The solid element FEA analysis, which is adopted as the baseline in this study, is subsequently conducted for the stiffness of the frame, Next, beam element FEA analysis is performed for validating the feasibility of the beam element FEA model by comparing the results from the solid and beam element FEA models. It is found that the beam element FEA model can predict the frame stiffness with acceptable accuracy and reduce the computation cost significantly.展开更多
Tubular hydroforming has attracted increased attention in the vehicle industry recently. This paper covers a complete hydroforming process design for an instrum ent panel frame by finite element simulation using the e...Tubular hydroforming has attracted increased attention in the vehicle industry recently. This paper covers a complete hydroforming process design for an instrum ent panel frame by finite element simulation using the explicit code LS-DYNA. The manufacturing process for the instrument panel frame consists of tube pre-be nding and final hydroforming. To accomplish hydroforming process design successf ully, a thorough investigation of proper combination of process parameters such as internal hydraulic pressure and axial feeding is carried out by finite element simulation to predict the tube wall thickness and shape. An optimized process parameter combination is obtained and verified by the instrument panel frame hyd roforming experiment. The experiment shows that designed process parameters can be used in real production through FEA simulation, but tubular thinned amplitu de by FEA is less than that with the experiment.展开更多
This article is concerned with finite element implementations of the three- dimensional geometrically exact rod. The special attention is paid to identifying the con- dition that ensures the frame invariance of the re...This article is concerned with finite element implementations of the three- dimensional geometrically exact rod. The special attention is paid to identifying the con- dition that ensures the frame invariance of the resulting discrete approximations. From the perspective of symmetry, this requirement is equivalent to the commutativity of the employed interpolation operator I with the action of the special Euclidean group SE(3), or I is SE(3)-equivariant. This geometric criterion helps to clarify several subtle issues about the interpolation of finite rotation. It leads us to reexamine the finite element for- mulation first proposed by Simo in his work on energy-momentum conserving algorithms. That formulation is often mistakenly regarded as non-objective. However, we show that the obtained approximation is invariant under the superposed rigid body motions, and as a corollary, the objectivity of the continuum model is preserved. The key of this proof comes from the observation that since the numerical quadrature is used to compute the integrals, by storing the rotation field and its derivative at the Gauss points, the equiv- ariant conditions can be relaxed only at these points. Several numerical examples are presented to confirm the theoretical results and demonstrate the performance of this al- gorithm.展开更多
The non-uniform beam components are commonly used in engineering,while the method to analyze such component is not too satisfactory yet. A new non-uniform beam element with high precision was developed based on the no...The non-uniform beam components are commonly used in engineering,while the method to analyze such component is not too satisfactory yet. A new non-uniform beam element with high precision was developed based on the non-linear analysis and the static condensation. Based on the interpolation theory, the displacement fields of the three-node non-uniform Euler-Bernoulli beam element were constructed at first: the quintic Hermite interpolation polynomial was used for the lateral displacement field and the quadratic Lagrange interpolation polynomial for the axial displacement field. Then,based on the basic assumptions of non-uniform Euler-Bernoulli beam whose section properties were continuously varying along its centroidal axis, the linear and geometric stiffness matrices of the three-node non-uniform beam element were derived according to the nonlinear finite element theory. Finally,the degrees of freedom ( DOFs) of the middle node of the element were eliminated using the static condensation method, and a new two-node non-uniform beam element including axial-force effect was obtained. The results indicate that each bar needs to be meshed with only one element could get a fairly accurate solution when it is applied to the stability analyses.展开更多
模态分析是水电机组故障诊断的重要方法,但其传统方法缺少对接触部分非线性接触的模拟手段,直接影响模态分析的准确性,也无法对链接部位的失效过程及趋势进行分析。该文基于用户自定义单元子程序接口(user-defined element subroutine i...模态分析是水电机组故障诊断的重要方法,但其传统方法缺少对接触部分非线性接触的模拟手段,直接影响模态分析的准确性,也无法对链接部位的失效过程及趋势进行分析。该文基于用户自定义单元子程序接口(user-defined element subroutine interface,UEL),建立了结合部三维非线性专用分析单元模型。推导所提模型有限元格式的基本方程,获得表征材料非线性特性的本构关系;给出螺栓连接的固定结合部的静态分析,以及立式水轮发电机导轴承支架的模态分析算例;给出导轴承支架的支臂末端螺栓连接变刚度计算的工程应用实例。实验与仿真对比结果表明了建立的UEL三维非线性接触分析专用单元模型的正确性;连接失效分析表明了随着导轴承支架接触刚度的下降,会在整机模态频率计算中引入新的频率段这一结果的重要性。展开更多
为解决水深45.000 m深海风机钢管桩基础安装作业可靠性差和精度低等问题,对一种新型深海风机钢管桩基础安装用导向架进行结构优化。采用有限元法(Finite Element Method, FEM)与试验相结合的方法,从环境参数与作用载荷、结构形式、作业...为解决水深45.000 m深海风机钢管桩基础安装作业可靠性差和精度低等问题,对一种新型深海风机钢管桩基础安装用导向架进行结构优化。采用有限元法(Finite Element Method, FEM)与试验相结合的方法,从环境参数与作用载荷、结构形式、作业工况和结构强度与结构稳定性等方面对导向架进行综合研究。经海试验证,优化的导向架的打桩精度与打桩高效性均满足技术指标要求,可大幅提高深海风机钢管桩基础安装作业速度和质量。展开更多
文摘Truck frames should be designed and fabricated with enough rigidity to avoid excessive deflections. Finite element analysis (FEA) plays an important role in all stages of frame designs. While being accurate, 3D solid element FEA models are built upon frame configuration details which are not feasible in the preliminary design stage, partially because of limited available design data of frames and heavy computation costs. This research develops 1D beam element FEA models for simulating frame structures. In this paper, the CAD model of a truck frame is first created. The solid element FEA analysis, which is adopted as the baseline in this study, is subsequently conducted for the stiffness of the frame, Next, beam element FEA analysis is performed for validating the feasibility of the beam element FEA model by comparing the results from the solid and beam element FEA models. It is found that the beam element FEA model can predict the frame stiffness with acceptable accuracy and reduce the computation cost significantly.
文摘Tubular hydroforming has attracted increased attention in the vehicle industry recently. This paper covers a complete hydroforming process design for an instrum ent panel frame by finite element simulation using the explicit code LS-DYNA. The manufacturing process for the instrument panel frame consists of tube pre-be nding and final hydroforming. To accomplish hydroforming process design successf ully, a thorough investigation of proper combination of process parameters such as internal hydraulic pressure and axial feeding is carried out by finite element simulation to predict the tube wall thickness and shape. An optimized process parameter combination is obtained and verified by the instrument panel frame hyd roforming experiment. The experiment shows that designed process parameters can be used in real production through FEA simulation, but tubular thinned amplitu de by FEA is less than that with the experiment.
文摘This article is concerned with finite element implementations of the three- dimensional geometrically exact rod. The special attention is paid to identifying the con- dition that ensures the frame invariance of the resulting discrete approximations. From the perspective of symmetry, this requirement is equivalent to the commutativity of the employed interpolation operator I with the action of the special Euclidean group SE(3), or I is SE(3)-equivariant. This geometric criterion helps to clarify several subtle issues about the interpolation of finite rotation. It leads us to reexamine the finite element for- mulation first proposed by Simo in his work on energy-momentum conserving algorithms. That formulation is often mistakenly regarded as non-objective. However, we show that the obtained approximation is invariant under the superposed rigid body motions, and as a corollary, the objectivity of the continuum model is preserved. The key of this proof comes from the observation that since the numerical quadrature is used to compute the integrals, by storing the rotation field and its derivative at the Gauss points, the equiv- ariant conditions can be relaxed only at these points. Several numerical examples are presented to confirm the theoretical results and demonstrate the performance of this al- gorithm.
文摘The non-uniform beam components are commonly used in engineering,while the method to analyze such component is not too satisfactory yet. A new non-uniform beam element with high precision was developed based on the non-linear analysis and the static condensation. Based on the interpolation theory, the displacement fields of the three-node non-uniform Euler-Bernoulli beam element were constructed at first: the quintic Hermite interpolation polynomial was used for the lateral displacement field and the quadratic Lagrange interpolation polynomial for the axial displacement field. Then,based on the basic assumptions of non-uniform Euler-Bernoulli beam whose section properties were continuously varying along its centroidal axis, the linear and geometric stiffness matrices of the three-node non-uniform beam element were derived according to the nonlinear finite element theory. Finally,the degrees of freedom ( DOFs) of the middle node of the element were eliminated using the static condensation method, and a new two-node non-uniform beam element including axial-force effect was obtained. The results indicate that each bar needs to be meshed with only one element could get a fairly accurate solution when it is applied to the stability analyses.
文摘模态分析是水电机组故障诊断的重要方法,但其传统方法缺少对接触部分非线性接触的模拟手段,直接影响模态分析的准确性,也无法对链接部位的失效过程及趋势进行分析。该文基于用户自定义单元子程序接口(user-defined element subroutine interface,UEL),建立了结合部三维非线性专用分析单元模型。推导所提模型有限元格式的基本方程,获得表征材料非线性特性的本构关系;给出螺栓连接的固定结合部的静态分析,以及立式水轮发电机导轴承支架的模态分析算例;给出导轴承支架的支臂末端螺栓连接变刚度计算的工程应用实例。实验与仿真对比结果表明了建立的UEL三维非线性接触分析专用单元模型的正确性;连接失效分析表明了随着导轴承支架接触刚度的下降,会在整机模态频率计算中引入新的频率段这一结果的重要性。
文摘为解决水深45.000 m深海风机钢管桩基础安装作业可靠性差和精度低等问题,对一种新型深海风机钢管桩基础安装用导向架进行结构优化。采用有限元法(Finite Element Method, FEM)与试验相结合的方法,从环境参数与作用载荷、结构形式、作业工况和结构强度与结构稳定性等方面对导向架进行综合研究。经海试验证,优化的导向架的打桩精度与打桩高效性均满足技术指标要求,可大幅提高深海风机钢管桩基础安装作业速度和质量。