Framed structures are usually infilled with masonry walls. They may cause a significant increase in both stiffness and strength, reducing the deformation demand and increasing the energy dissipation capacity of the sy...Framed structures are usually infilled with masonry walls. They may cause a significant increase in both stiffness and strength, reducing the deformation demand and increasing the energy dissipation capacity of the system. On the other hand, irregular arrangements of the masonry panels may lead to the concentration of damage in some regions, with negative effects; for example soft story mechanisms and shear failures in short columns. Therefore, the presence ofinfill walls should not be neglected, especially in regions of moderate and high seismicity. To this aim, simple models are available for solid infills walls, such as the diagonal no-tension strut model, while infilled frames with openings have not been adequately investigated. In this study, the effect of openings on the strength and stiffness of infilled frames is investigated by means of about 150 experimental and numerical tests. The main parameters involved are identified and a simple model to take into account the openings in the infills is developed and compared with other models proposed by different researchers. The model, which is based on the use of strength and stiffness reduction factors, takes into account the opening dimensions and presence of reinforcing elements around the opening. An example of an application of the proposed reduction factors is also presented.展开更多
The equivalent stress at key positions of Bogie Frame for DMUs Exported to Tunisia is obtained by using simulation analysis. The evaluation of static strength and fatigue strength is checked referring to UIC specifica...The equivalent stress at key positions of Bogie Frame for DMUs Exported to Tunisia is obtained by using simulation analysis. The evaluation of static strength and fatigue strength is checked referring to UIC specification and Goodman sketch for welding materials. In addition, the modal analysis of the frame is made, and the vibrational modal of frame in given frequency domain is predetermined to evaluate the dynamical behavior of the frame in order to meet the dynamical design requirements. The results show that the key points of the calculated frame of the equivalent stress are less than allowable stress, and thus it could provide a theoretical foundation for the optimized design of frame structure and safety of industrial production.展开更多
This paper describes an investigation of a high-strength concrete frame reinforced with high-strength rebars that was tested in the structure engineering laboratory at Shenyang Jianzhu University. The frame specimen w...This paper describes an investigation of a high-strength concrete frame reinforced with high-strength rebars that was tested in the structure engineering laboratory at Shenyang Jianzhu University. The frame specimen was pseudo- dynamically loaded to indicate three earthquake ground motions of different hazard levels, after which the test specimen was subjected to a pseudo-static loading. This paper focuses on the design, construction and experiment of the test frame and validation of the simulation models. Research shows that a high-strength concrete frame reinforced with high-strength rebars is more efficient and economical than a traditional reinforced concrete frame structure. In addition to the economies achieved by effective use of materials, research shows that the frame can provide enough strength to exceed conventional reinforced concrete frames and provide acceptable ductility. The test study provides evidence to validate the performance of a high- strength concrete frame designed according to current seismic code provisions. Based on previous test research, a nonlinear FEM analysis is completcd by using OpenSees software, The dynamic responses of the frame structure are numerically analyzed, The results of the numerical simulation show that the model can calculate the seismic responses of the frame by OpenSees. At the same time, the test provides additional opportunities to validate the performance of the simulation models.展开更多
Static strength finite element analysis was conducted to decrease the weight of a skeleton vehicle's frame. Results indicated that the maximum stress occurs on the front beam 's variable section area. Dynamic sensit...Static strength finite element analysis was conducted to decrease the weight of a skeleton vehicle's frame. Results indicated that the maximum stress occurs on the front beam 's variable section area. Dynamic sensitivity analysis elucidated the relationship between the maximum stress and the thickness of a particular beam,e. g.,top,middle,and bottom beam. Displacement was analyzed by the key part that influenced the maximum stress. Finally,the new plan using BS960 super-high-strength beam steel and the preferred beam thickness was compared with the original plan. New combinations of beam thickness were introduced on the basis of different purposes; the maximum responding light w eight ratio was 21%.展开更多
The object of this study is to determine the seismic response of regular high-rise steel buildings with chevron-braced frames. Mechanics models of three buildings of 14, 18 and 20 stories are studied, all of them with...The object of this study is to determine the seismic response of regular high-rise steel buildings with chevron-braced frames. Mechanics models of three buildings of 14, 18 and 20 stories are studied, all of them with similar geometric characteristics in plant and elevation. These models are realized using prescriptions and parameters from venezuelan design codes. The seismic action is carry on through varius synthetic design spectrum compatible accelerograms defined by the seismic codes in this study, with three levels of intensity corresponding to three specific Limit States. Dynamic analysis is used to compute parameters of ductility, over strength and maximum displacements. From these results it can be concluded that chevron-braced frames presented a good overall performance and non V-braced frames show greater damage due to dynamic actions, validating non linear dynamic analysis as a very powerful tool to seismic-resistance design and chevron-braced frames as a very useful choice in improving the response of tall steel structures. since this lateral bracing system is absent from Venezuelan seismic codes.展开更多
对比分析了EN 13749、JIS E 4207、TB/T 3548和TB/T 3549.1标准对动车组转向架构架强度设计载荷的规定。分析了ERRI B 12/RP 17报告、JIS E 4207标准和DVS 1612标准提出的结构疲劳强度分析方法。在不同框架下分析了CR400BF动车组动力转...对比分析了EN 13749、JIS E 4207、TB/T 3548和TB/T 3549.1标准对动车组转向架构架强度设计载荷的规定。分析了ERRI B 12/RP 17报告、JIS E 4207标准和DVS 1612标准提出的结构疲劳强度分析方法。在不同框架下分析了CR400BF动车组动力转向架的疲劳强度。分析结果表明:在EN/ERRI和JIS框架下进行分析,所获得的结构疲劳强度薄弱区域一致。所考察区域的应力均值由垂向载荷决定,在不同框架下获得的节点应力均值差异较小。JIS方法基于动载荷作用下的绝对值最大主应力计算循环应力幅,获得的循环应力幅显著大于基于ERRI方法获得的结果。在JIS框架下进行分析,节点材料利用率数值较大,分析结果偏于保守。展开更多
基金The financial support of the Ministry of the Instruction, University and Research of Italy (MIUR)
文摘Framed structures are usually infilled with masonry walls. They may cause a significant increase in both stiffness and strength, reducing the deformation demand and increasing the energy dissipation capacity of the system. On the other hand, irregular arrangements of the masonry panels may lead to the concentration of damage in some regions, with negative effects; for example soft story mechanisms and shear failures in short columns. Therefore, the presence ofinfill walls should not be neglected, especially in regions of moderate and high seismicity. To this aim, simple models are available for solid infills walls, such as the diagonal no-tension strut model, while infilled frames with openings have not been adequately investigated. In this study, the effect of openings on the strength and stiffness of infilled frames is investigated by means of about 150 experimental and numerical tests. The main parameters involved are identified and a simple model to take into account the openings in the infills is developed and compared with other models proposed by different researchers. The model, which is based on the use of strength and stiffness reduction factors, takes into account the opening dimensions and presence of reinforcing elements around the opening. An example of an application of the proposed reduction factors is also presented.
文摘The equivalent stress at key positions of Bogie Frame for DMUs Exported to Tunisia is obtained by using simulation analysis. The evaluation of static strength and fatigue strength is checked referring to UIC specification and Goodman sketch for welding materials. In addition, the modal analysis of the frame is made, and the vibrational modal of frame in given frequency domain is predetermined to evaluate the dynamical behavior of the frame in order to meet the dynamical design requirements. The results show that the key points of the calculated frame of the equivalent stress are less than allowable stress, and thus it could provide a theoretical foundation for the optimized design of frame structure and safety of industrial production.
基金Liaoning Provincial Natural Science Foundation of China Under Grant No. 20052005
文摘This paper describes an investigation of a high-strength concrete frame reinforced with high-strength rebars that was tested in the structure engineering laboratory at Shenyang Jianzhu University. The frame specimen was pseudo- dynamically loaded to indicate three earthquake ground motions of different hazard levels, after which the test specimen was subjected to a pseudo-static loading. This paper focuses on the design, construction and experiment of the test frame and validation of the simulation models. Research shows that a high-strength concrete frame reinforced with high-strength rebars is more efficient and economical than a traditional reinforced concrete frame structure. In addition to the economies achieved by effective use of materials, research shows that the frame can provide enough strength to exceed conventional reinforced concrete frames and provide acceptable ductility. The test study provides evidence to validate the performance of a high- strength concrete frame designed according to current seismic code provisions. Based on previous test research, a nonlinear FEM analysis is completcd by using OpenSees software, The dynamic responses of the frame structure are numerically analyzed, The results of the numerical simulation show that the model can calculate the seismic responses of the frame by OpenSees. At the same time, the test provides additional opportunities to validate the performance of the simulation models.
文摘Static strength finite element analysis was conducted to decrease the weight of a skeleton vehicle's frame. Results indicated that the maximum stress occurs on the front beam 's variable section area. Dynamic sensitivity analysis elucidated the relationship between the maximum stress and the thickness of a particular beam,e. g.,top,middle,and bottom beam. Displacement was analyzed by the key part that influenced the maximum stress. Finally,the new plan using BS960 super-high-strength beam steel and the preferred beam thickness was compared with the original plan. New combinations of beam thickness were introduced on the basis of different purposes; the maximum responding light w eight ratio was 21%.
文摘The object of this study is to determine the seismic response of regular high-rise steel buildings with chevron-braced frames. Mechanics models of three buildings of 14, 18 and 20 stories are studied, all of them with similar geometric characteristics in plant and elevation. These models are realized using prescriptions and parameters from venezuelan design codes. The seismic action is carry on through varius synthetic design spectrum compatible accelerograms defined by the seismic codes in this study, with three levels of intensity corresponding to three specific Limit States. Dynamic analysis is used to compute parameters of ductility, over strength and maximum displacements. From these results it can be concluded that chevron-braced frames presented a good overall performance and non V-braced frames show greater damage due to dynamic actions, validating non linear dynamic analysis as a very powerful tool to seismic-resistance design and chevron-braced frames as a very useful choice in improving the response of tall steel structures. since this lateral bracing system is absent from Venezuelan seismic codes.
文摘对比分析了EN 13749、JIS E 4207、TB/T 3548和TB/T 3549.1标准对动车组转向架构架强度设计载荷的规定。分析了ERRI B 12/RP 17报告、JIS E 4207标准和DVS 1612标准提出的结构疲劳强度分析方法。在不同框架下分析了CR400BF动车组动力转向架的疲劳强度。分析结果表明:在EN/ERRI和JIS框架下进行分析,所获得的结构疲劳强度薄弱区域一致。所考察区域的应力均值由垂向载荷决定,在不同框架下获得的节点应力均值差异较小。JIS方法基于动载荷作用下的绝对值最大主应力计算循环应力幅,获得的循环应力幅显著大于基于ERRI方法获得的结果。在JIS框架下进行分析,节点材料利用率数值较大,分析结果偏于保守。