期刊文献+
共找到48篇文章
< 1 2 3 >
每页显示 20 50 100
Experimental and Numerical Study on Progressive Collapse Analysis of a Glulam Frame Structure:I.Side Column Exposed to Fire
1
作者 Xiaowu Cheng Xinyan Tao Lu Wang 《Journal of Renewable Materials》 SCIE EI 2023年第2期905-920,共16页
This paper presents experimental and numerical investigations on progressive collapse behavior of a two-story glulam frame when the side column is exposed to ISO834 standard fire.The collapse mechanism initiated by fi... This paper presents experimental and numerical investigations on progressive collapse behavior of a two-story glulam frame when the side column is exposed to ISO834 standard fire.The collapse mechanism initiated by fire is identified.The experimental results show that the progressive collapse of a glulam frame could be described for three stages,namely bending effect stage,catenary effect stage and failure stage,respectively.These stages are discussed in detail to understand the structural behavior before and during collapse.It is demonstrated that the entire frame slopes towards the side of the heated column,and the“overturning”collapse occurs eventually.The catenary effect of beams is the main reason for the progressive collapse of the frame.In addition,a finite element model of a glulam frame is established to simulate the progressive collapse behavior.The effects of axial loads on the columns are summarized.The numerical simulation results agree well with the experimental results,which could verify the effectiveness and practicability of finite element simulation.Furthermore,the progressive collapse resistance of the frame in practical design were proposed. 展开更多
关键词 COLLAPSE glulam frame structure FIRE failure mechanisms
下载PDF
Response Spectrum Analysis of 7-story Assembled Frame Structure with Energy Dissipation System
2
作者 Jin Zhao Yi Wang Zhengwei Ma 《Structural Durability & Health Monitoring》 EI 2023年第2期159-173,共15页
Viscoelastic damper is an effective passive damping device,which can reduce the seismic response of the structure by increasing the damping and dissipating the vibration energy of structures.It has a wide application ... Viscoelastic damper is an effective passive damping device,which can reduce the seismic response of the structure by increasing the damping and dissipating the vibration energy of structures.It has a wide application prospect in actual structural vibration control because of simple device and economical material.In view of the poor seismic behaviors of assembled frame structure connections,various energy dissipation devices are proposed to improve the seismic performance.The finite element numerical analysis method is adopted to analyze relevant energy dissipation structural parameters.The response spectrum of a 7-story assembled frame structure combined the ordinary steel support,ordinary viscoelastic damper,and viscoelastic damper with displacement amplification device is analyzed.The analysis results show that the mechanical behavior of assembled frame structure with ordinary steel supports are not significantly different from those without energy dissipation devices.The assembled frame structure with viscoelastic damper has better seismic performance and energy dissipation,especially for the viscoelastic damper with displacement amplification devices.The maximum value of inter-story displacement angle decreases by 32.24%;the maximum floor displacement decreases by 31.91%,and the base shear decreases by 13.62%compared with the assembled frame structures without energy dissipation devices.The results show that the seismic fortification ability of the structure is significantly improved,and the overall structure is more uniformly stressed.The damping structure with viscoelastic damper mainly reduces the dynamic response of the structure by increasing the damping coefficient,rather than by changing the natural vibration period of the structure.This paper provides an effective theoretical basis and reference for improving the energy dissipation system and the seismic performance of assembled frame structures. 展开更多
关键词 Assembled frame structure energy dissipation devices response spectrum analysis viscoelastic damper
下载PDF
Discussion on Construction Technology and Welding Deformation of High-Rise Steel Frame Structure
3
作者 Sijin He Xinzhong Leng 《Journal of World Architecture》 2023年第5期23-28,共6页
Because of urbanization,land resources in China’s cities has become increasingly scarce.Therefore,modern buildings are becoming taller,making high-rise steel frame structures the new favorite of the construction indu... Because of urbanization,land resources in China’s cities has become increasingly scarce.Therefore,modern buildings are becoming taller,making high-rise steel frame structures the new favorite of the construction industry.However,the construction of high-rise steel frame structures requires advanced technology.If the construction technology is effectively implemented and the welding techniques of the construction personnel align with the requirements for high-rise steel frame structures,it can help mitigate deformations in the steel structure,thus preserving the overall construction quality of high-rise steel frame structures.To enhance the applicability of steel frame structures in high-rise buildings,this paper focuses on analyzing the optimization path for the construction process of high-rise steel frame structures.It introduces a tailored approach to control welding-induced deformations in steel frame structures,aiming to make a valuable contribution to the advancement of China’s construction industry. 展开更多
关键词 High-rise steel frame structure Construction technology Welding deformation Structural stability
下载PDF
Independent continuous mapping for topological optimization of frame structures 被引量:10
4
作者 Yunkang Sui Jiazheng Du Yingqiao Guo 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2006年第6期611-619,共9页
Based on the Independent Continuous Mapping method (ICM), a topological optimization model with continuous topological variables is built by introducing three filter functions for element weight, element allowable s... Based on the Independent Continuous Mapping method (ICM), a topological optimization model with continuous topological variables is built by introducing three filter functions for element weight, element allowable stress and element stiffness, which transform the 0-1 type discrete topological variables into continuous topological variables between 0 and 1. Two methods for the filter functions are adopted to avoid the structural singularity and recover falsely deleted elements: the weak material element method and the tiny section element method. Three criteria (no structural singularity, no violated constraints and no change of structural weight) are introduced to judge iteration convergence. These criteria allow finding an appropriate threshold by adjusting a discount factor in the iteration procedure. To improve the efficiency, the original optimization model is transformed into a dual problem according to the dual theory and solved in its dual space. By using MSC/Nastran as the structural solver and MSC/Patran as the developing platform, a topological optimization software of frame structures is accomplished. Numerical examples show that the ICM method is very efficient for the topological optimization of frame structures. 展开更多
关键词 frame structures Topological optimization ICM method Filter functions Element elimination
下载PDF
Evaluation of collapse resistance of RC frame structures for Chinese schools in seismic design categories B and C 被引量:8
5
作者 Tang Baoxin Lu Xinzheng +1 位作者 Ye Lieping Shi Wei 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2011年第3期369-377,共9页
According to the Code for Seismic Design of Buildings (GB50011-2001), ten typical reinforced concrete (RC) frame structures, used as school classroom buildings, are designed with different seismic fortification in... According to the Code for Seismic Design of Buildings (GB50011-2001), ten typical reinforced concrete (RC) frame structures, used as school classroom buildings, are designed with different seismic fortification intensities (SFIs) (SFI=6 to 8.5) and different seismic design categories (SDCs) (SDC=B and C). The collapse resistance of the frames with SDC=B and C in terms of collapse fragility curves are quantitatively evaluated and compared via incremental dynamic analysis (IDA). The results show that the collapse resistance of structures should be evaluated based on both the absolute seismic resistance and the corresponding design seismic intensity. For the frames with SFI from 6 to 7.5, because they have relatively low absolute seismic resistance, their collapse resistance is insufficient even when their corresponding SDCs are upgraded from B to C. Thus, further measures are needed to enhance these structures, and some suggestions are proposed. 展开更多
关键词 RC frame structures collapse resistance fragility curves seismic fortification intensity incremental dynamic analysis mega-earthquake
下载PDF
Self-centering seismic retrofit scheme for reinforced concrete frame structures:SDOF system study 被引量:5
6
作者 Yunfeng Zhang and Xiaobin Hu Department of Civil and Environmental Engineering,University of Maryland,College Park,MD 20742,USA 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2010年第2期271-283,共13页
This paper presents the results of a parametric study of self-centering seismic retrofit schemes for reinforced concrete (RC) frame buildings. The self-centering retrofit system features flag-shaped hysteresis and min... This paper presents the results of a parametric study of self-centering seismic retrofit schemes for reinforced concrete (RC) frame buildings. The self-centering retrofit system features flag-shaped hysteresis and minimal residual deformation. For comparison purpose,an alternate seismic retrofit scheme that uses a bilinear-hysteresis retrofit system such as buckling-restrained braces (BRB) is also considered in this paper. The parametric study was carried out in a single-degree-of-freedom (SDOF) system framework since a multi-story building structure may be idealized as an equivalent SDOF system and investigation of the performance of this equivalent SDOF system can provide insight into the seismic response of the multi-story building. A peak-oriented hysteresis model which can consider the strength and stiffness degradation is used to describe the hysteretic behavior of RC structures. The parametric study involves two key parameters -the strength ratio and elastic stiffness ratio between the seismic retrofit system and the original RC frame. An ensemble of 172 earthquake ground motion records scaled to the design basis earthquake in California with a probability of exceedance of 10% in 50 years was constructed for the simulation-based parametric study. The effectiveness of the two seismic retrofit schemes considered in this study is evaluated in terms of peak displacement ratio,peak acceleration ratio,energy dissipation demand ratio and residual displacement ratio between the SDOF systems with and without retrofit. It is found from this parametric study that RC structures retrofitted with the self-centering retrofit scheme (SCRS) can achieve a seismic performance level comparable to the bilinear-hysteresis retrofit scheme (BHRS) in terms of peak displacement and energy dissipation demand ratio while having negligible residual displacement after earthquake. 展开更多
关键词 EARTHQUAKE reinforced concrete frame structure nonlinear analysis SDOF system seismic retrofit SELF-CENTERING
下载PDF
Investigation on seismic response of a three-stage soil slope supported by anchor frame structure 被引量:5
7
作者 LIN Yu-liang LI Ying-xin +1 位作者 ZHAO Lian-heng YANG T Y 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第4期1290-1305,共16页
Based on a typical prototype of a soil slope in engineering practice, a numerical model of a three-stage soil slope supported by the anchor frame structure was established by means of FLAC3D code. The dynamic response... Based on a typical prototype of a soil slope in engineering practice, a numerical model of a three-stage soil slope supported by the anchor frame structure was established by means of FLAC3D code. The dynamic responses of three-stage soil slope and frame structure were studied by performing a series of bidirectional Wenchuan motions in terms of the failure mode of three-stage structure, the acceleration of soil slope, the displacement of frame structure, and the anchor stress of frame structure. The response accelerations in both horizontal and vertical directions are the most largely amplified at the slope top of each stage subjected to different shaking cases. The platforms among the stages reduce the amplification effect of response acceleration. The residual displacement of frame structure increases significantly as the intensity of shaking case increases. The frame structure at each stage presents a combined displacement mode consisting of a translation and a rotation around the vertex. The anchor stress of frame structure is mainly increased by the first intense pulse of Wenchuan seismic wave, and it is sensitive to the intensity of shaking case. The anchor stress of frame structure at the first stage is the most considerably enlarged by earthquake loading. 展开更多
关键词 three-stage soil slope anchor frame structure ACCELERATION DISPLACEMENT anchor stress
下载PDF
Numerical Simulation of Dynamic Response and Collapse for Steel Frame Structures Subjected to Blast Load 被引量:4
8
作者 张秀华 段忠东 张春巍 《Transactions of Tianjin University》 EI CAS 2008年第B10期523-529,共7页
The progressive collapse of steel frame structures under the blast load was investigated using LS-DYNA. The multi-material Eulerian and Lagrangian coupling algorithm was adopted. A flu-id-structure coupling finite ele... The progressive collapse of steel frame structures under the blast load was investigated using LS-DYNA. The multi-material Eulerian and Lagrangian coupling algorithm was adopted. A flu-id-structure coupling finite element model was established which consists of Lagrange element for simulating steel frame structures and concrete ground, multiple ALE element for simulating air and TNT explosive material. Numerical simulations of the blast pressure wave propagation, struc-tural dynamic responses and deformation, and progressive collapse of a five-story steel frame structure in the event of an explosion near above ground were performed. The numerical analysis showed that the Lagrangian and Eulerian coupling algorithm gave good simulations of the shock wave propagation in the mediums and blast load effects on the structure. The columns subjected to blast load may collapse by shear yielding rather than by flexural deformation. The columns and joints of steel beam to column in the front steel frame structure generated enormous plastic defor-mation subjected to intensive blast waves, and columns lost carrying capacity, subsequently lead-ing to the collapse of the whole structure. The approach coupling influence between struc-tural deformation and fluid load well simulated the progressive collapse process of structures, and provided an effective tool for analyzing the collapse mechanism of the steel frame structure under blast load. 展开更多
关键词 blast load progressive collapse steel frame structures numerical simulation finite element
下载PDF
Study of the seismic response of a recycled aggregate concrete frame structure 被引量:2
9
作者 Wang Changqing Xiao Jianzhuang 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2013年第4期669-680,共12页
Based on six-degree-of-freedom three-dimensional shaking table tests, the seismic response of a recycled aggregate concrete (RAC) frame was obtained. The analysis results indicate that the maximum story shear force ... Based on six-degree-of-freedom three-dimensional shaking table tests, the seismic response of a recycled aggregate concrete (RAC) frame was obtained. The analysis results indicate that the maximum story shear force and overturning moment reduce proportionally along the height of the model under the same earthquake wave. The story shear force, base shear coefficient and overturning moment of the structure increase progressively as the acceleration amplitude increases. The base shear coefficient is primarily controlled by the peak ground acceleration (PGA). The relationships between the PGA and the shear coefficient as well as between the PGA and the dynamic amplification factor are obtained by mathematical fitting. The dynamic amplification factor decreases rapidly at the elastic-plastic stage, but decreases slowly with the development of the elastic-plasticity stage. The results show that the RAC frame structure has reasonable deformability when compared with natural aggregate concrete frame structures. The maximum inter-story drift ratios of the RAC frame model under frequent and rare intensity 8 test phases are 1/266 and 1/29, respectively, which are larger than the allowable value of 1/500 and 1/50 according to Chinese seismic design requirements. Nevertheless, the RAC frame structure does not collapse under base excitations with PGAs from 0.066 g up to 1.170 g. 展开更多
关键词 recycled aggregate concrete (RAC) frame structure seismic response shear coefficient dynamicamplification factor
下载PDF
Concurrent multi-scale design optimization of composite frame structures using the Heaviside penalization of discrete material model 被引量:6
10
作者 Jun Yan Zunyi Duan +1 位作者 Erik Lund Guozhong Zhao 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2016年第3期430-441,共12页
This paper deals with the concurrent multi-scale optimization design of frame structure composed of glass or carbon fiber reinforced polymer laminates. In the composite frame structure, the fiber winding angle at the ... This paper deals with the concurrent multi-scale optimization design of frame structure composed of glass or carbon fiber reinforced polymer laminates. In the composite frame structure, the fiber winding angle at the micro-material scale and the geometrical parameter of components of the frame in the macro-structural scale are introduced as the independent variables on the two geometrical scales. Considering manufacturing requirements, discrete fiber winding angles are specified for the micro design variable. The improved Heaviside penalization discrete material optimization interpolation scheme has been applied to achieve the discrete optimization design of the fiber winding angle. An optimization model based on the minimum structural compliance and the specified fiber material volume constraint has been established. The sensitivity information about the two geometrical scales design variables are also deduced considering the characteristics of discrete fiber winding angles. The optimization results of the fiber winding angle or the macro structural topology on the two single geometrical scales, together with the concurrent two-scale optimization, is separately studied and compared in the paper. Numerical examples in the paper show that the concurrent multi-scale optimization can further explore the coupling effect between the macro-structure and micro-material of the composite to achieve an ultralight design of the composite frame structure. The novel two geometrical scales optimization model provides a new opportunity for the design of composite structure in aerospace and other industries. 展开更多
关键词 Composite frame structure Multi-scale optimization Topology optimization Fiber winding angle Structural compliance
下载PDF
New Factor to Characterize Mechanism of “Strong Column-Weak Beam” of RC Frame Structures 被引量:1
11
作者 李心霞 公茂盛 +1 位作者 韩庆华 谢礼立 《Transactions of Tianjin University》 EI CAS 2015年第6期484-491,共8页
Most reinforced concrete(RC)frame structures did not achieve the "strong column-weak beam" failure mode in recent big earthquakes, resulting in a large number of casualties and significant property loss. To ... Most reinforced concrete(RC)frame structures did not achieve the "strong column-weak beam" failure mode in recent big earthquakes, resulting in a large number of casualties and significant property loss. To deal with this serious problem, a new column-beam relative factor was proposed to characterize the relative yield situation of column ends and beam ends. By limiting the column-beam relative factor, RC frame structures could achieve the "strong column-weak beam" failure mode under the excitation of strong ground motions. The limit values of column-beam relative factor were calculated, analyzed and verified by using structural simulation models for corner columns in the bottom story of structures, which are destroyed most seriously in earthquakes. The results show that the limit values should be analyzed under bi-directional ground motion and with different axial compression ratios of columns. The peak ground acceleration(PGA)of ground motions has no significant effect on the limit values, while the type of strong ground motions has a significant effect on the limit values. 展开更多
关键词 RC frame structure strong column-weak beam limit value of column-beam relative factor moment magnification factor at column end
下载PDF
Pseudo-dynamic test and numerical simulation of high-strength concrete frame structure reinforced with high-strength rebars
12
作者 Chen Xin Yan Shi Ji Baojian 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2011年第2期303-311,共9页
This paper describes an investigation of a high-strength concrete frame reinforced with high-strength rebars that was tested in the structure engineering laboratory at Shenyang Jianzhu University. The frame specimen w... This paper describes an investigation of a high-strength concrete frame reinforced with high-strength rebars that was tested in the structure engineering laboratory at Shenyang Jianzhu University. The frame specimen was pseudo- dynamically loaded to indicate three earthquake ground motions of different hazard levels, after which the test specimen was subjected to a pseudo-static loading. This paper focuses on the design, construction and experiment of the test frame and validation of the simulation models. Research shows that a high-strength concrete frame reinforced with high-strength rebars is more efficient and economical than a traditional reinforced concrete frame structure. In addition to the economies achieved by effective use of materials, research shows that the frame can provide enough strength to exceed conventional reinforced concrete frames and provide acceptable ductility. The test study provides evidence to validate the performance of a high- strength concrete frame designed according to current seismic code provisions. Based on previous test research, a nonlinear FEM analysis is completcd by using OpenSees software, The dynamic responses of the frame structure are numerically analyzed, The results of the numerical simulation show that the model can calculate the seismic responses of the frame by OpenSees. At the same time, the test provides additional opportunities to validate the performance of the simulation models. 展开更多
关键词 high-strength concrete pseudo dynamic test seismic response analysis frame structure finite elementmethod OPENSEES
下载PDF
Estimation of Aleatory Randomness by S_(a)(T_(1))-Based Intensity Measures in Fragility Analysis of Reinforced Concrete Frame Structures
13
作者 Yantai Zhang Yongan Shi +1 位作者 Baoyin Sun ZhengWang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2022年第1期73-96,共24页
Based on the multiple stripes analysis method,an investigation of the estimation of aleatory randomness by S_(a)(T_(1))-based intensity measures(IMs)in the fragility analysis is carried out for two typical low-and med... Based on the multiple stripes analysis method,an investigation of the estimation of aleatory randomness by S_(a)(T_(1))-based intensity measures(IMs)in the fragility analysis is carried out for two typical low-and mediumrise reinforced concrete(RC)frame structures with 4 and 8 stories,respectively.The sensitivity of the aleatory randomness estimated in fragility curves to various S_(a)(T_(1))-based IMs is analyzed at three damage limit states,i.e.,immediate occupancy,life safety,and collapse prevention.In addition,the effect of characterization methods of bidirectional ground motion intensity on the record-to-record variability is investigated.It is found that the damage limit state of the structure has an important influence on the applicability of the ground motion IM.The S_(a)(T_(1))-based IMs,considering the effect of softened period,can maintain lower record-to-record variability in the three limit states,and the S_(a)(T_(1))-based IMs,considering the effect of higher modes,do not show their advantage over S_(a)(T_(1)).Furthermore,the optimal multiplier C and exponentαin the dual-parameter ground motion IM are proposed to obtain a lower record-to-record variability in the fragility analysis of different damage limit state.Finally,the improved dual-parameter ground motion IM is applied in the risk assessment of the 8-story frame structure. 展开更多
关键词 RC frame structure intensity measure fragility analysis record-to-record variability softened period risk assessment
下载PDF
ANALYSIS ON IMPACT RESPONSES OF UNRESTRAINED PLANAR FRAME STRUCTURE(Ⅰ)—FORMULA DERIVATION
14
作者 陈镕 郑海涛 +2 位作者 薛松涛 唐和生 HE Fu-bao 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2005年第11期1449-1457,共9页
The generalized Fourier-series method was used to derive the impact responses formula of an unrestrained planar frame structure when subjected to an impact of a moving rigid-body. By using these formula, the analytic ... The generalized Fourier-series method was used to derive the impact responses formula of an unrestrained planar frame structure when subjected to an impact of a moving rigid-body. By using these formula, the analytic solutions of dynamic responses of the contact-impact system can be obtained. During the derivation, the momentum sum of elastic responses of the contact-impact system is demonstrated to be zero. From the derivation, it is seen that the modal method can also be used to solve this kind of impact problem. 展开更多
关键词 unrestrained planar frame structure impact rigid response elastic response
下载PDF
ANALYSIS ON IMPACT RESPONSES OF UNRESTRAINED PLANAR FRAME STRUCTURE(Ⅱ)—NUMERICAL EXAMPLE ANALYSIS
15
作者 陈镕 郑海涛 +2 位作者 薛松涛 唐和生 HE Fu-bao 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2005年第11期1458-1463,共6页
By using the formula derived in Part ( Ⅰ ), the instant response of an unrestrained planar frame structure subjected to the impact of a moving rigid-body are evaluated and analysed. The impact force-time history be... By using the formula derived in Part ( Ⅰ ), the instant response of an unrestrained planar frame structure subjected to the impact of a moving rigid-body are evaluated and analysed. The impact force-time history between the structure and the moving rigid-body, shear force and bending moment distribution along the beams, axial force distribution along the bars were calculated. The wave propagation phenomena of the longitudinal wave in the bars, the flexural and shear waves in the beams were also analysed. The numerical results show that the time duration of impact force is controlled by the flexural wave and the longitudinal wave ; the shear effect in beams should not be neglected in the impact response analysis of structures. 展开更多
关键词 unrestrained planar frame structure IMPACT impact force wave propagation
下载PDF
Three-Dimensional Shaking Table Test of 1/10 Scale Model of Reinforced Concrete Frame Structure
16
作者 LIU Tao, ZhANG Zhi-mei, XIE Li-min Department of Civil Engineering, Shanghai University Shanghai 200072, China Shenzhen Laiyingda Industry and Trade Co. Ltd, Shenzhen 518020, China 《Advances in Manufacturing》 SCIE CAS 2000年第S1期21-24,共4页
A l/10 scale model of reinforced concrete (R C ) frame structure was tested on the 15t-shaking table of State Key Laboratory, Tongji University The structural prototype was a 10-storey office building that was damag... A l/10 scale model of reinforced concrete (R C ) frame structure was tested on the 15t-shaking table of State Key Laboratory, Tongji University The structural prototype was a 10-storey office building that was damaged in the 1985 Mexico major earthquake[1] The original acceleration records in the earthquake were applied as the input waves in the test The dynamical test model was designed according to the general law of similarity, and the effect of the shortage of artificial quality was considered The model was carefully made of fine gravel concrete and galvanized iron wire The damage of test model is in good agreement with that of archetypal building in the experiment 展开更多
关键词 R C frame structure shaking table law of similarity
下载PDF
Improved modal truncation error in the directly analytical method for damage identification of frame structures
17
作者 Yang Youfa Xu Dian +1 位作者 Huang Jing Liang Wenguang 《Engineering Sciences》 EI 2010年第4期91-96,共6页
The damage identification is made by the numerical simulation analysis of a five-storey-and-two-span RC frame structure, using improved and unimproved direct analytical method respectively; and the fundamental equatio... The damage identification is made by the numerical simulation analysis of a five-storey-and-two-span RC frame structure, using improved and unimproved direct analytical method respectively; and the fundamental equations were solved by the minimal least square method (viz. general inverse method). It demonstrates that the feasibility and the accuracy of the present approach were impoved significantly, compared with the result of unimproved damage identification. 展开更多
关键词 frame structures the directly analytical method damage identification the modal truncation error the minimal least square method
下载PDF
Application Example of Reinforced Concrete Frame Structure Waste Dam in the Proiect of Valley Sanitary Landfill
18
作者 Zhao Guohan Yang Shunshen Liu Fan 《International Journal of Technology Management》 2014年第5期36-41,共6页
waste dam is one of the most important infrastructures in the project of valley sanitary landfill. On one hand, it forms the landfill capacity required. On the other hand, it improves the slope stability of waste body... waste dam is one of the most important infrastructures in the project of valley sanitary landfill. On one hand, it forms the landfill capacity required. On the other hand, it improves the slope stability of waste body. Consequently, I think it is very significant to maintain the stability of waste dana for the whole sanitary landfill. Combining with a project example, aiming at the special geological conditions, we have made three plans of waste dam structure, calculation and analysis comparison respectively. Reinforced concrete frame waste dam is highlighted in the project for its advantages, smoothly solving the three problems in the engineering. 展开更多
关键词 valley sanitary landfill waste dam frame structure structure design
下载PDF
Research on the direct damage-based seismic design method of RC frame structures
19
作者 Lanfang LUO Jing XU 《International Journal of Technology Management》 2013年第2期65-67,共3页
Based on the existing research, this paper presents an innovative methodology to realize direct damage-based seismic design for RC frame structures by mobilizing ESDOF theory and the damage-based strength reduction fa... Based on the existing research, this paper presents an innovative methodology to realize direct damage-based seismic design for RC frame structures by mobilizing ESDOF theory and the damage-based strength reduction factor(RD factor). A design example is then followed to verify this method. 展开更多
关键词 Reinforced concrete frame structures Direct damage-based seismic design Damage-based inelastic response spectrum
下载PDF
Seismic performance and resilience of composite damping self-centering braced frame structures
20
作者 Longhe Xu Xingsi Xie Zhongxian Li 《Fundamental Research》 CAS CSCD 2024年第3期603-610,共8页
A magnetorheological self-centering brace(MR–SCB)has been proposed to improve the energy dissipation capability of the brace.In this paper,a 15-story MR–SCB braced frame is numerically analyzed to examine its seismi... A magnetorheological self-centering brace(MR–SCB)has been proposed to improve the energy dissipation capability of the brace.In this paper,a 15-story MR–SCB braced frame is numerically analyzed to examine its seismic performance and resilience.The MR–SCB provides higher lateral stiffness than the buckling restrained brace and greater energy dissipation capability than the existing self-centering brace.The brace also exhibits a reliable recentering capacity.Under rare earthquakes,the maximum average residual deformation ratio of the structure is less than the 0.5%limit.Under mega earthquakes,the maximum average interstory drift ratio of the structure does not exceed the 2.0%elastoplastic limit,and its maximum average floor acceleration ratio is 1.57.The effects of mainshock and aftershock on the structural behavior are also investigated.The interstory drift and residual deformation of the structure increase with the increase of the intensity of the aftershock.Under aftershocks with the same intensity as the mainshocks,the maximum increment of the residual deformation ratio of the structure is 81.8%,and the average interstory drift ratios of the 12^(th),7^(th),and 3^(rd)stories of the structure are increased by 13.4%,9.2%and 7.5%,respectively.The strong aftershock may significantly cause increased damage to the structure,and increase its collapse risk and residual deformation. 展开更多
关键词 Braced frame structure Self-centeringbrace Magnetorheological fluid Disc spring Seismic performance Seismic resilience Mainshock-aftershock
原文传递
上一页 1 2 3 下一页 到第
使用帮助 返回顶部