This paper discusses the issue of performance requirements and construction criteria for masonry enclosure and infill walls. Vertical building enclosures in European countries are very often constituted by non-load-be...This paper discusses the issue of performance requirements and construction criteria for masonry enclosure and infill walls. Vertical building enclosures in European countries are very often constituted by non-load-bearing masonry walls, using horizontally perforated clay bricks. These walls are generally supported and confined by a reinforced concrete frame structure of columns and beams/slabs. Since these walls are commonly considered to be nonstructural elements and their influence on the structural response is ignored, their consideration in the design of structures as well as their connection to the adjacent structural elements is frequently negligent or insufficiently detailed. As a consequence, nonstructural elements, as for wall enclosures, are relatively sensitive to drift and acceleration demands when buildings are subjected to seismic actions. Many international standards and technical documents stress the need for design acceptability criteria for nonstructural elements, however they do not specifically indicate how to prevent collapse and severe cracking, and how to enhance the overall stability in the case of moderate to high seismic loading. Furthermore, a review of appropriate measures to improve enclosure wall performance and both in-plane and out-of-plane integrity under seismic actions is addressed.展开更多
This paper presents an experimental investigation on the flexural behavior of cross-connected brick masonry infill wall panels supported on reinforced concrete beam grids above and below the walls.The experimental pro...This paper presents an experimental investigation on the flexural behavior of cross-connected brick masonry infill wall panels supported on reinforced concrete beam grids above and below the walls.The experimental program was comprised of six wall systems.The effect of change in lower beam stiffness relative to the wall and the geometry of the main walls were investigated.From the results of the experimental tests,the increase in the depth of the lower beam grid reduces the deflection,resulting in an increase in the load carrying capacity of the wall.Further,the stiffness of the main walls affects the deflection and the failure load of the cross walls.展开更多
In order to study the dynamic behaviour of construction,specifically seismic response of structures,as many researchers did,we have resorted to modelling methods,based on the scaled internal forces.Therefore,this rese...In order to study the dynamic behaviour of construction,specifically seismic response of structures,as many researchers did,we have resorted to modelling methods,based on the scaled internal forces.Therefore,this research includes results of an experimental investigation aimed to establish the possibility of realistic simulations of the cyclic response of small-scale models of one bay,one-storey reinforced concrete frames with masonry infills as a preliminary step for simulating the dynamic response of such structural.So,the specimens constructed were 1:9 scale R/C frames.These 1:9 scale infill frames were constructed with prototype materials and were tested in an extensive experimental sequence representing specimens of a scale near the prototype(1:3).The tested laboratory models include 1:3 scale infilled R/C frames that were built from original material such as steel,concrete and masonry infills(hollow masonry units and mortar).With the same scale,geometry and construction materials used for the construction of a 1:3 scale 5-story three dimensional building.This program consisted of 16 models,5 bare and 11 masonry infilled.all models refer to single-storey one-bay 1:9 scale as for the original structure and a one third of the scale(1:3)as for the prototype(1:3).The reinforced concrete specimens were designed in such a way as to prevent shear failure of the columns.Finally,the present paper was carried out in the Laboratory of Strength of Materials and Structures in the Department of Civil Engineering at Aristotle University of Thessaloniki.展开更多
砌体填充墙作为非结构构件在建筑结构抗爆分析中常被忽略,而实际爆炸事故中填充墙多发生严重破坏,从而影响爆炸波的传播及其与结构的相互作用以及结构的损伤破坏等级。基于精细化数值仿真方法评估外部爆炸作用下砌体填充墙对钢筋混凝土(...砌体填充墙作为非结构构件在建筑结构抗爆分析中常被忽略,而实际爆炸事故中填充墙多发生严重破坏,从而影响爆炸波的传播及其与结构的相互作用以及结构的损伤破坏等级。基于精细化数值仿真方法评估外部爆炸作用下砌体填充墙对钢筋混凝土(reinforced concrete,RC)框架结构损伤破坏的影响。首先,采用LS-DYNA有限元分析软件分别对典型砌体填充墙和含填充墙RC框架的近区爆炸试验进行复现,验证所采用的填充墙简化微观建模方法、材料本构模型和参数,以及任意拉格朗日欧拉爆炸荷载施加方法和爆炸波-结构流固耦合算法的适用性。进一步结合结构混合单元建模方法,开展了美国联邦应急管理署规定的普通轿车炸弹(454 kg TNT当量)在底层边柱位置爆炸下,6度、7度和8度抗震设防烈度的典型6层纯框架和含填充墙框架结构动力行为的数值仿真分析,考察了爆炸波传播路径,以及结构的动态响应、损伤破坏和抗倒塌机制。结果表明:该工况中填充墙能够有效阻挡爆炸波的传播,作用于目标柱相邻内柱上的超压峰值降低95%,减轻了内部构件的损伤程度;但同时加剧了结构迎爆面的损伤破坏,如3种抗震设防烈度的含填充墙框架目标柱柱中侧向位移较纯框架分别增加21.4%、31.1%和14.8%;不同抗震设防烈度的纯框架和含填充墙框架的顶层目标柱竖向位移基本相同,即抗震设防烈度及砌体填充墙对框架结构整体倒塌行为的影响可以忽略。展开更多
文摘This paper discusses the issue of performance requirements and construction criteria for masonry enclosure and infill walls. Vertical building enclosures in European countries are very often constituted by non-load-bearing masonry walls, using horizontally perforated clay bricks. These walls are generally supported and confined by a reinforced concrete frame structure of columns and beams/slabs. Since these walls are commonly considered to be nonstructural elements and their influence on the structural response is ignored, their consideration in the design of structures as well as their connection to the adjacent structural elements is frequently negligent or insufficiently detailed. As a consequence, nonstructural elements, as for wall enclosures, are relatively sensitive to drift and acceleration demands when buildings are subjected to seismic actions. Many international standards and technical documents stress the need for design acceptability criteria for nonstructural elements, however they do not specifically indicate how to prevent collapse and severe cracking, and how to enhance the overall stability in the case of moderate to high seismic loading. Furthermore, a review of appropriate measures to improve enclosure wall performance and both in-plane and out-of-plane integrity under seismic actions is addressed.
文摘This paper presents an experimental investigation on the flexural behavior of cross-connected brick masonry infill wall panels supported on reinforced concrete beam grids above and below the walls.The experimental program was comprised of six wall systems.The effect of change in lower beam stiffness relative to the wall and the geometry of the main walls were investigated.From the results of the experimental tests,the increase in the depth of the lower beam grid reduces the deflection,resulting in an increase in the load carrying capacity of the wall.Further,the stiffness of the main walls affects the deflection and the failure load of the cross walls.
文摘In order to study the dynamic behaviour of construction,specifically seismic response of structures,as many researchers did,we have resorted to modelling methods,based on the scaled internal forces.Therefore,this research includes results of an experimental investigation aimed to establish the possibility of realistic simulations of the cyclic response of small-scale models of one bay,one-storey reinforced concrete frames with masonry infills as a preliminary step for simulating the dynamic response of such structural.So,the specimens constructed were 1:9 scale R/C frames.These 1:9 scale infill frames were constructed with prototype materials and were tested in an extensive experimental sequence representing specimens of a scale near the prototype(1:3).The tested laboratory models include 1:3 scale infilled R/C frames that were built from original material such as steel,concrete and masonry infills(hollow masonry units and mortar).With the same scale,geometry and construction materials used for the construction of a 1:3 scale 5-story three dimensional building.This program consisted of 16 models,5 bare and 11 masonry infilled.all models refer to single-storey one-bay 1:9 scale as for the original structure and a one third of the scale(1:3)as for the prototype(1:3).The reinforced concrete specimens were designed in such a way as to prevent shear failure of the columns.Finally,the present paper was carried out in the Laboratory of Strength of Materials and Structures in the Department of Civil Engineering at Aristotle University of Thessaloniki.
文摘砌体填充墙作为非结构构件在建筑结构抗爆分析中常被忽略,而实际爆炸事故中填充墙多发生严重破坏,从而影响爆炸波的传播及其与结构的相互作用以及结构的损伤破坏等级。基于精细化数值仿真方法评估外部爆炸作用下砌体填充墙对钢筋混凝土(reinforced concrete,RC)框架结构损伤破坏的影响。首先,采用LS-DYNA有限元分析软件分别对典型砌体填充墙和含填充墙RC框架的近区爆炸试验进行复现,验证所采用的填充墙简化微观建模方法、材料本构模型和参数,以及任意拉格朗日欧拉爆炸荷载施加方法和爆炸波-结构流固耦合算法的适用性。进一步结合结构混合单元建模方法,开展了美国联邦应急管理署规定的普通轿车炸弹(454 kg TNT当量)在底层边柱位置爆炸下,6度、7度和8度抗震设防烈度的典型6层纯框架和含填充墙框架结构动力行为的数值仿真分析,考察了爆炸波传播路径,以及结构的动态响应、损伤破坏和抗倒塌机制。结果表明:该工况中填充墙能够有效阻挡爆炸波的传播,作用于目标柱相邻内柱上的超压峰值降低95%,减轻了内部构件的损伤程度;但同时加剧了结构迎爆面的损伤破坏,如3种抗震设防烈度的含填充墙框架目标柱柱中侧向位移较纯框架分别增加21.4%、31.1%和14.8%;不同抗震设防烈度的纯框架和含填充墙框架的顶层目标柱竖向位移基本相同,即抗震设防烈度及砌体填充墙对框架结构整体倒塌行为的影响可以忽略。