期刊文献+
共找到1,170篇文章
< 1 2 59 >
每页显示 20 50 100
Insight into structure evolution of carbon nitrides and its energy conversion as luminescence
1
作者 Hao Zhang Jingwei Zhang +4 位作者 Wenjie Chen Minjia Tao Xianguang Meng Yuanjian Zhang Guifu Zuo 《Carbon Energy》 SCIE EI CAS CSCD 2024年第2期37-60,共24页
A series of carbon nitride(CN)materials represented by graphitic carbon nitride(g-C_(3)N_(4))have been widely used in bioimaging,biosensing,and other fields in recent years due to their nontoxicity,low cost,and high l... A series of carbon nitride(CN)materials represented by graphitic carbon nitride(g-C_(3)N_(4))have been widely used in bioimaging,biosensing,and other fields in recent years due to their nontoxicity,low cost,and high luminescent quantum efficiency.What is more attractive is that the luminescent properties such as wavelength and intensity can be regulated by controlling the structure at the molecular level.Hence,it is time to summarize the related research on CN structural evolution and make a prospect on future developments.In this review,we first summarize the research history and multiple structural evolution of CN.Then,the progress of improving the luminescence performance of CN through structural evolution was discussed.Significantly,the relationship between CN structure evolution and energy conversion in the forms of photoluminescence,chemiluminescence,and electrochemiluminescence was reviewed.Finally,key challenges and opportunities such as nanoscale dispersion strategy,luminous efficiency improving methods,standardization evaluation,and macroscopic preparation of CN are highlighted. 展开更多
关键词 carbon nitride CHEMILUMINESCENCE ELECTROCHEMILUMINESCENCE energy conversion PHOTOLUMINESCENCE structural evolution
下载PDF
Design of ZnSe-CoSe heterostructure decorated in hollow N-doped carbon nanocage with generous adsorption and catalysis sites for the reversibly fast kinetics of polysulfide conversion 被引量:2
2
作者 Junan Feng Chuan Shi +7 位作者 Hanghang Dong Chaoyue Zhang Wendong Liu Yu Liu Tianyi Wang Xiaoxian Zhao Shuangqiang Chen Jianjun Song 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第11期135-145,I0004,共12页
Although lithium-sulfur batteries(Li SBs)are regarded as one of the most promising candidates for the next-generation energy storage system,the actual industrial application is hindered by the sluggish solid–liquid p... Although lithium-sulfur batteries(Li SBs)are regarded as one of the most promising candidates for the next-generation energy storage system,the actual industrial application is hindered by the sluggish solid–liquid phase conversion kinetics,severe shuttle effect,and low sulfur loadings.Herein,a zeolitic imidazolate framework(ZIF)derived heterogeneous ZnSe-CoSe nanoparticles encapsulated in hollow N-doped carbon nanocage(ZnSe-CoSe-HNC)was designed by etching with tannic acid as a multifunctional electrocatalyst to boost the polysulfide conversion kinetics in LiSBs.The hollow structure in ZIF ensures large inner voids for sulfur and buffering volume expansions.Abundant exposed ZnSe-CoSe heterogeneous interfaces serve as bifunctional adsorption-catalytic centers to accelerate the conversion kinetics and alleviate the shuttle effect.Together with the highly conductive framework,the ZnSe-CoSeHNC/S cathode exhibits a high initial reversible capacity of 1305.3 m A h g-1at 0.2 C,high-rate capability,and reliable cycling stability under high sulfur loading and lean electrolyte(maintaining at 745 m A h g-1after 200 cycles with a high sulfur loading of 6.4 mg cm-2and a low electrolyte/sulfur ratio of 6μL mg^(-1)).Theoretical calculations have demonstrated the heterostructures of ZnSe-CoSe offer higher binding energy to lithium polysulfides than that of ZnSe or CoSe,facilitating the electron transfer to lithium polysulfides.This work provides a novel heterostructure with superior catalytic ability and hollow conductive architecture,paving the way for the practical application of functional sulfur electrodes. 展开更多
关键词 Lithium-sulfur batteries HETEROstructure conversion Kinetics Hollow structure Bi-directional catalysis
下载PDF
Recent advances in core-shell organic framework-based photocatalysts for energy conversion and environmental remediation
3
作者 Qibing Dong Ximing Li +9 位作者 Yanyan Duan Qingyun Tian Xinxin Liang Yiyin Zhu Lin Tian Junjun Wang Atif Sial Yongqian Cui Ke Zhao Chuanyi Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期168-199,I0004,共33页
Direct conversion of solar energy into chemical energy in an environmentally friendly manner is one of the most promising strategies to deal with the environmental pollution and energy crisis.Among a variety of materi... Direct conversion of solar energy into chemical energy in an environmentally friendly manner is one of the most promising strategies to deal with the environmental pollution and energy crisis.Among a variety of materials developed as photocatalysts,the core-shell metal/covalent-organic framework(MOF or COF)photocatalysts have garnered significant attention due to their highly porous structure and the adjustability in both structure and functionality.The existing reviews on core-shell organic framework photocatalytic materials have mainly focused on core-shell MOF materials.However,there is still a lack of indepth reviews specifically addressing the photocatalytic performance of core-shell COFs and MOFs@COFs.Simultaneously,there is an urgent need for a comprehensive review encompassing these three types of core-shell structures.Based on this,this review aims to provide a comprehensive understanding and useful guidelines for the exploration of suitable core-shell organic framework photocatalysts towards appropriate photocatalytic energy conversion and environmental governance.Firstly,the classification,synthesis,formation mechanisms,and reasonable regulation of core-shell organic framework were summarized.Then,the photocatalytic applications of these three kinds of core-shell structures in different areas,such as H_(2)evolution,CO_(2)reduction,and pollutants degradation are emphasized.Finally,the main challenges and development prospects of core-shell organic framework photocatalysts were introduced.This review aims to provide insights into the development of a novel generation of efficient and stable core-shell organic framework materials for energy conversion and environmental remediation. 展开更多
关键词 Organic framework Core-shell structure PHOTOCATALYSIS Energy conversion Environmental remediation
下载PDF
Optimizing the power conversion processes in diluted donor/acceptor heterojunctions towards 19.4%efficiency all-polymer solar cells
4
作者 Liang Wang Chen Chen +11 位作者 Zirui Gan Chenhao Liu Chuanhang Guo Weiyi Xia Wei Sun Jingchao Cheng Yuandong Sun Jing Zhou Zexin Chen Dan Liu Wei Li Tao Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第9期345-350,共6页
All polymer solar cells(all-PSCs)promise mechanically-flexible and morphologically-stable organic photovoltaics and have aroused increased interests very recently.However,due to their disorderly conformation structure... All polymer solar cells(all-PSCs)promise mechanically-flexible and morphologically-stable organic photovoltaics and have aroused increased interests very recently.However,due to their disorderly conformation structures within the photoactive film,inefficient charge generation and carrier transport are observed which lead to inferior photovoltaic performance compared to smaller molecular acceptor-based photovoltaics.Here,by diluting PM6 with a cutting-edge polymeric acceptor PY-IT and diluting PY-IT with PM6 or D18,donor-dominating or acceptor-dominating heterojunctions were prepared.Synchrotron X-ray and multiple spectrometer techniques reveal that the diluted heterojunctions receive increased structural order,translating to enhanced carrier mobility,improved exciton diffusion length,and suppressed non-radiative recombination loss during the power conversion.As the results,the corresponding PM6+1%PY-IT/PY-IT+1%D18 and PM6+1%PY-IT/PY-IT+1%PM6 devices fabricated by layer-by-layer deposition received superior power conversion efficiency(PCE)of 19.4%and 18.8%respectively,along with enhanced operational lifetimes in air,outperforming the PCE of 17.5%in the PM6/PY-IT reference device. 展开更多
关键词 All-polymer solar cells Power conversion efficiency structural order Charge generation
下载PDF
New development in Fe/Co catalysts:Structure modulation and performance optimization for syngas conversion 被引量:4
5
作者 Yinwen Li Xin Zhang Min Wei 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2018年第8期1329-1346,共18页
C1 chemistry is the essence of coal chemistry and natural gas chemistry. Catalytic methods to efficiently convert C1 molecules into fuels and chemicals have been extensively studied. Syngas(CO +H_2) conversion is t... C1 chemistry is the essence of coal chemistry and natural gas chemistry. Catalytic methods to efficiently convert C1 molecules into fuels and chemicals have been extensively studied. Syngas(CO +H_2) conversion is the most important industrial reaction system in C1 chemistry, and Fe and Co catalysts, two major industrial catalysts, have been the focus of fundamental research and industrial application. In the last decade, considerable research efforts have been devoted to discoveries concerning catalyst structure and increasing market demands for olefins and oxygenates. Since the development of efficient catalysts would strongly benefit from catalyst design and the establishment of a new reaction system, this review comprehensively overviews syngas conversion in three main reactions, highlights the advances recently made and the challenges that remain open, and will stimulate future research activities. The first part of the review summarizes the breakthroughs in Fischer-Tropsch synthesis regarding the optimization of activity and stability, determination of the active phase, and mechanistic studies. The second part overviews the modulation of catalytic structure and product selectivity for Fischer-Tropsch to olefins(FTO). Catalysts designed to produce higher alcohols, as well as to tune product selectivity in C1 chemistry, are described in the third section. Finally, present challenges in syngas conversion are proposed, and the solutions and prospects are discussed from the viewpoint of fundamental research and practical application. This review summarizes the latest advances in the design, preparation, and application of Fe/Co-based catalysts toward syngas conversion and presents the challenges and future directions in producing value-added fuels. 展开更多
关键词 Syngas conversion Fe/Cocatalyst structure modulation Performance optimization Product selectivity
下载PDF
Quasi-40-Day Oscillation and Its Teleconnection Structure together with the Possible Dependence on Conversion of Barotropic Unstable Energy of Temporal Mean Flow 被引量:1
6
作者 徐建军 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 1993年第2期193-200,共8页
A study is made of the distribution of the diagnostic quantity vector E and the teleconnection structure of 30-50 (quasi-40) day oscillation, together with the dependence on the conversion of barotropic unstable energ... A study is made of the distribution of the diagnostic quantity vector E and the teleconnection structure of 30-50 (quasi-40) day oscillation, together with the dependence on the conversion of barotropic unstable energy of mean flow in terms of ECWMF daily 500 hPa grid data in winter, indicating that the energy transportation is closely associated with the westerly jet position, with zonal (meridional) propagation in the strong (weak) wind region, that considerable conversion of barotropic energy occurs at the jet exit region where low-frequency oscillation gains energy from the mean flow, leading to maximum kinetic energy for the oscillation observed there, which is marked by evident barotropy in striking contrast to the baroclinicity at low latitudes and that the teleconnection core is related to the center of action in the atmosphere and bound up with the pattern of the west wind. 展开更多
关键词 Quasi-40-Day Oscillation and Its Teleconnection structure together with the Possible Dependence on conversion of Barotropic Unstable Energy of Temporal Mean Flow
下载PDF
Impact of Two-Way FDI on the Industrial Structure in Shandong Province Under the Background of “New and Old Kinetic Energy Conversion”
7
作者 Zhiqing Xia Ge Song Zahid Hussain 《Proceedings of Business and Economic Studies》 2022年第5期153-157,共5页
This paper uses the panel data of 17 cities in Shandong Province from 2003 to 2018 to construct a panel model to empirically study the impact of foreign direct investment(FDI)on the industrial structure.The results sh... This paper uses the panel data of 17 cities in Shandong Province from 2003 to 2018 to construct a panel model to empirically study the impact of foreign direct investment(FDI)on the industrial structure.The results show that two-way investment,financial industry development,and policy variables have significant roles in promoting the advancement of the industrial structure in the province.In the future implementation of the“Going Global”strategy in Shandong Province,the cooperation between two-way investment and the financial industry should be strengthened,the level of regional financial development should be improved,and the impact of two-way investment on the optimization and upgrading of the industrial structure should be reinforced. 展开更多
关键词 New and old kinetic energy conversion Foreign direct investment Industrial structure transformation
下载PDF
Tailored deep-eutectic solvent method to enable 3D porous iron fluoride bricks for conversion-type lithium batteries 被引量:2
8
作者 Chuanzhong Lai Keyi Chen +3 位作者 Yongjian Zheng Junwei Meng Jiulin Hu Chilin Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第3期178-187,I0006,共11页
Conversion-type fluoride cathode can provide considerable energy density for Li batteries,however its scalable and facile synthesis strategies are still lacking.Here,a novel Fe-based deep eutectic solvent composed of ... Conversion-type fluoride cathode can provide considerable energy density for Li batteries,however its scalable and facile synthesis strategies are still lacking.Here,a novel Fe-based deep eutectic solvent composed of nitrite and methylsulfonylmethane is proposed as both the reaction medium and precursor to synthesize O-doped FeF3porous bricks.This method is cheaper,safe,mildly operable,environmentally friendly and recyclable for non-fluorinated metal cations.The homogenization of charge and mass transport in cathode network effectively mitigates the volume extrusion and electrode coarsening even for the micro-sized monolithic particles.The Co-solvation modulated fluoride cathode delivers high reversible capacity in a wide temperature range(486 and 235 mA h g^(-1)at 25℃ and-20℃ respectively),excellent rate performance(312 mA h g^(-1)at 1000 mA g^(-1)),corresponding to an energy density as high as672.1 W h kg^(-1)under a power density of 2154.3 W kg^(-1).The successful operation of fluoride pouchcell with a capacity exceeding 450 mA h g^(-1)(even under thin Li foil and lean electrolyte conditions) indicates its potentiality of commercial application. 展开更多
关键词 Ironfluoride Deep-Eutectic solvent conversion cathode Li batteries Porous brick structure
下载PDF
Triazine-based multicomponent metallacages with tunable structures for SO_(2) selective capture and conversion 被引量:1
9
作者 Ruoqian Zhang Dingyue Hu +6 位作者 Yu Fu Qian Feng Chaoqun Mu Kai Gao Heping Ma Ming Liu Mingming Zhang 《Aggregate》 EI CAS 2024年第1期270-279,共10页
The design of novel materials for sulfur dioxide(SO_(2))capture and conversion with considerable efficiency under mild conditions is of great significance for human health and environmental protection yet highly chall... The design of novel materials for sulfur dioxide(SO_(2))capture and conversion with considerable efficiency under mild conditions is of great significance for human health and environmental protection yet highly challenging.Herein,we report a series of triazine-based multicomponent metallacages via coordination-driven self-assembly of 2,4,6-tri(4-pyridyl)-1,3,5-triazine,cis-Pt(PEt3)2(OTf)2 and different tetracarboxylic ligands.As the increase of the length of the tetracarboxylates,the structures of the metallacages change from pyramids to extended octahedrons.Owing to their N-rich structure,these metallacages are further used for selective SO_(2)capture,showing good adsorption capacity and remarkable SO_(2)/CO_(2)selectivity in ambient conditions,suggesting their potential applications toward real flue gas desulfurization.The metallacages are further employed for the conversion of SO_(2)into value-added compounds,showing exceptional efficiency even dilute SO_(2)is used as the reactant.This study represents a type of structure-tunable triazinebased metallacages for SO_(2)capture and conversion,which will pave the way on the applications of metal-organic complexes for gas adsorption. 展开更多
关键词 multicomponent metallacages self-assembly SO_(2) adsorption SO_(2) conversion tunable structures
原文传递
Mn^(4+) activated phosphors in photoelectric and energy conversion devices
10
作者 Yang Ding Chunhua Wang +8 位作者 Lang Pei Qinan Mao Sateesh Bandaru Runtian Zheng Soumyajit Maitra Meijiao Liu Li-Hua Chen Bao-Lian Su Jiasong Zhong 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第11期277-299,I0007,共24页
Owing to their high luminous efficiency and tunable emission in both red light and far-red light regions,Mn^(4+)ion-activated phosphors have appealed significant interest in photoelectric and energy conversion devices... Owing to their high luminous efficiency and tunable emission in both red light and far-red light regions,Mn^(4+)ion-activated phosphors have appealed significant interest in photoelectric and energy conversion devices such as white light emitting diode(W-LED),plant cultivation LED,and temperature thermometer.Up to now,Mn^(4+)has been widely introduced into the lattices of various inorganic hosts for brightly redemitting phosphors.However,how to correlate the structure-activity relationship between host framework,luminescence property,and photoelectric device is urgently demanded.In this review,we thoroughly summarize the recent advances of Mn^(4+)doped phosphors.Meanwhile,several strategies like co-doping and defect passivation for improving Mn^(4+)emission are also discussed.Most importantly,the relationship between the protocols for tailoring the structures of Mn^(4+)doped phosphors,increased luminescence performance,and the targeted devices with efficient photoelectric and energy conversion efficiency is deeply correlated.Finally,the challenges and perspectives of Mn^(4+)doped phosphors for practical applications are anticipated.We cordially anticipate that this review can deliver a deep comprehension of not only Mn^(4+)luminescence mechanism but also the crystal structure tailoring strategy of phosphors,so as to spur innovative thoughts in designing advanced phosphors and deepening the applications. 展开更多
关键词 Mn^(4+) activator PHOSPHOR structure tailoring Photoelectric device Energy conversion
下载PDF
Reflections on Chinese Culture from the Perspective of Chinese Conversation Structure
11
作者 姚思思 郭鸿雁 《英语广场(学术研究)》 2011年第Z3期105-108,共4页
Though Chinese conversation structure has some overlap with the English conversation structure, it has many differences in the details because of the in? uence of unique Chinese culture. This thesis analyses every par... Though Chinese conversation structure has some overlap with the English conversation structure, it has many differences in the details because of the in? uence of unique Chinese culture. This thesis analyses every part of the Chinese conversation structure by listing many concrete examples which reflects how Chinese culture in? uence the Chinese conversation structure. 展开更多
关键词 CHINESE conversATION structure CHINESE CULTURE features
下载PDF
Chinese Conversation Structure
12
作者 刘燕 《海外英语》 2016年第16期230-232,共3页
This paper aims to describe the features of Chinese conversation structure. Specifically speaking, the structure will be analyzed from the following four aspects: openings and pre-sequence, adjacency pairs, pre-closin... This paper aims to describe the features of Chinese conversation structure. Specifically speaking, the structure will be analyzed from the following four aspects: openings and pre-sequence, adjacency pairs, pre-closing and closing. Generally speaking, Chinese conversation structure is similar to English conversation structure. But still a lot of differences are found due to cultural factors. 展开更多
关键词 Chinese conversation structure FEATURES DIFFERENCES cultural factors
下载PDF
On Chinese Conversation Structure
13
作者 张宏伟 《科技信息》 2007年第33期204-206,共3页
With the aim of introducing Chinese conversational communication characteristics in Chinese cultural,this paper lists the Chinese conversation structure and describes the characteristics of its components "settin... With the aim of introducing Chinese conversational communication characteristics in Chinese cultural,this paper lists the Chinese conversation structure and describes the characteristics of its components "setting up","pragmatic acts","uptakes" and "pre-closing".By giving some specific examples,the paper also explains how the components work according to Chinese social conventions in Chinese society. 展开更多
关键词 会话结构 会话 汉语 人际交流
下载PDF
Cerium Chemical Conversion Coating on a Novel Mg-Li Alloy 被引量:6
14
作者 高丽丽 张春红 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2010年第1期112-117,共6页
A novel Mg-Li alloy was treated in a cerium nitrate solution and cerium chemical conversion coating was obtained on the alloy. Then the forming process, structure and corrosion resistance of the coating were investiga... A novel Mg-Li alloy was treated in a cerium nitrate solution and cerium chemical conversion coating was obtained on the alloy. Then the forming process, structure and corrosion resistance of the coating were investigated. The influential factors of cerium conversion coating were discussed through orthogonal experiments, and the optimum processing parameters were confirmed. XPS spectra displayed that the conversion coating consisted of cerium compounds, and the major component of the protective layer was a mixture of Ce (IV) oxide and Ce (IV) hydroxide. In addition, XRD pattern illustrated that there was crystalline CeO2 in the conversion coating. Analysis by SEM showed that the cerium conversion coating was uniform with a fiber-like morphology. The thickness of the conversion coating was 12 μm. The results of electrochemical potentiodynamic polarization and hydrogen evolution measurement indicated that the cerium conversion coating provided effective protection to the novel Mg-Li alloy. 展开更多
关键词 Mg-Li alloy chemical conversion coating cerium nitrate coating structure corrosion resistance
下载PDF
Nonlinear optics with structured light 被引量:10
15
作者 Wagner Tavares Buono Andrew Forbes 《Opto-Electronic Advances》 SCIE EI 2022年第6期1-19,共19页
The interest in tailoring light in all its degrees of freedom is steadily gaining traction,driven by the tremendous developments in the toolkit for the creation,control and detection of what is now called structured l... The interest in tailoring light in all its degrees of freedom is steadily gaining traction,driven by the tremendous developments in the toolkit for the creation,control and detection of what is now called structured light.Because the complexity of these optical fields is generally understood in terms of interference,the tools have historically been linear optical elements that create the desired superpositions.For this reason,despite the long and impressive history of nonlinear optics,only recently has the spatial structure of light in nonlinear processes come to the fore.In this review we provide a concise theoretical framework for understanding nonlinear optics in the context of structured light,offering an overview and perspective on the progress made,and the challenges that remain. 展开更多
关键词 wave mixing parametric conversion high harmonic generation structured light photonic crystals HOLOGRAPHY nonlinear optics second harmonic generation metasurfaces
下载PDF
Hydrogenation Conversion of Phenanthrene over Dispersed Mo-based Catalysts 被引量:6
16
作者 Hu Yiwen Da Zhijian Wang Zijun 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2015年第3期7-14,共8页
With oil-soluble molybdenum compound and sublimed sulfur serving as raw materials, two dispersed Mo-based catalysts were prepared, characterized and then applied to the hydrogenation conversion of phenanthrene. The te... With oil-soluble molybdenum compound and sublimed sulfur serving as raw materials, two dispersed Mo-based catalysts were prepared, characterized and then applied to the hydrogenation conversion of phenanthrene. The test results showed that under the conditions specified by this study, the catalyst prepared in a higher sulfiding atmosphere was more catalytically active due to its higher content of MoS2 and stronger intrinsic catalytic activity of MoS2 unit, which demonstrated that the sulfiding atmosphere for the preparation of catalysts not only could influence the yield of MoS2 but also the structure of MoS2.The analysis on the selectivity of octahydrophenanthrene isomers revealed that the catalyst prepared in a lower sulfiding atmosphere had a relatively higher catalytic selectivity to the hydrogenation of outer aromatic ring and the structure of catalysts could be modified under the specific reaction conditions. Moreover, the selectivity between the isomers of as-octahydrophenanthrene at different reaction time and temperature was analyzed and, based on the results, a hydrogenation mechanism over dispersed Mo-based catalysts was suggested, with monatomic hydrogen transfer and catalytic surface desorption of the half-addition intermediates functioning as the key points. In addition, it is concluded that the catalyst prepared in a lower sulfiding atmosphere was more capable of adsorption than the other one. 展开更多
关键词 dispersed Mo-based catalysts phenanthrene conversion MoS2 structure product selectivity hydrogenationmechanism
下载PDF
Hollow structured Cu@ZrO_(2) derived from Zr-MOF for selective hydrogenation of CO_(2) to methanol 被引量:4
17
作者 Xiaoyu Han Maoshuai Li +5 位作者 Xiao Chang Ziwen Hao Jiyi Chen Yutong Pan Sibudjing Kawi Xinbin Ma 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第8期277-287,I0008,共12页
The development of a highly efficient catalyst for CO_(2) activation and selective conversion to methanol is critical to address the issues associated with the high thermal stability of CO_(2) and controllable synthes... The development of a highly efficient catalyst for CO_(2) activation and selective conversion to methanol is critical to address the issues associated with the high thermal stability of CO_(2) and controllable synthesis of methanol.Cu-based catalysts have been widely studied because of the low cost and excellent performance in mild conditions.However,the improvement of catalytic activity and selectivity remains challenging.Herein,we prepared hollow Cu@ZrO_(2) catalysts through pyrolysis of Cu-loaded Zr-MOF for CO_(2) hydrogenation to methanol.Low-temperature pyrolysis generated highly dispersed Cu nanoparticles with balanced Cu^(0)/Cu^(+)sites,larger amounts of surface basic sites and abundant Cu-ZrO_(2) interface in the hollow structure,contributing to enhanced catalytic capacity for adsorption/activation of CO_(2) and selective hydrogenation to methanol.In situ Fourier Transform Infrared Spectroscopy revealed the methanol formation followed the formate-intermediated pathway.This work would provide a guideline for the design of high-performance catalysts and the understanding of the mechanism and active sites for CO_(2) hydrogenation to methanol. 展开更多
关键词 CO_(2)conversion Methanol synthesis Cu-based catalyst MOF808 Hollow structure
下载PDF
Catalyst Engineering for Electrochemical Energy Conversion from Water to Water:Water Electrolysis and the Hydrogen Fuel Cell 被引量:4
18
作者 Lishan Peng Zidong Wei 《Engineering》 SCIE EI 2020年第6期653-679,共27页
In the context of the current serious problems related to energy demand and climate change,substantial progress has been made in developing a sustainable energy system.Electrochemical hydrogen-water conversion is an i... In the context of the current serious problems related to energy demand and climate change,substantial progress has been made in developing a sustainable energy system.Electrochemical hydrogen-water conversion is an ideal energy system that can produce fuels via sustainable,fossil-free pathways.However,the energy conversion efficiency of two functioning technologies in this energy system—namely,water electrolysis and the fuel cell—still has great scope for improvement.This review analyzes the energy dissipation of water electrolysis and the fuel cell in the hydrogen-water energy system and discusses the key barriers in the hydrogen-and oxygen-involving reactions that occur on the catalyst surface.By means of the scaling relations between reactive intermediates and their apparent catalytic performance,this article summarizes the frameworks of the catalytic activity trends,providing insights into the design of highly active electrocatalysts for the involved reactions.A series of structural engineering methodologies(including nano architecture,facet engineering,polymorph engineering,amorphization,defect engineering,element doping,interface engineering,and alloying)and their applications based on catalytic performance are then introduced,w让h an emphasis on the rational guidance from previous theoretical and experimental studies.The key scientific problems in the electrochemical hydrogen-water conversion system are outlined,and future directions are proposed for developing advanced catalysts for technologies with high energy-conversion efficiency. 展开更多
关键词 Renewable energy system Hydrogen-water energy conversion ELECTROCATALYSIS Electrocatalyst engineering structure design Water electrolysis Fuel cell
下载PDF
In situ induced cation-vacancies in metal sulfides as dynamic electrocatalyst accelerating polysulfides conversion for Li-S battery 被引量:2
19
作者 Rongrong Li Hao Sun +3 位作者 Caiyun Chang Yuan Yao Xiong Pu Wenjie Mai 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第12期74-82,I0003,共10页
Cation vacancy engineering is considered to be one of the effective methods to solve the issues of shuttling and sluggish redox kinetics of Li PSs owing to the intrinsic tunability of electronic structure.However,cati... Cation vacancy engineering is considered to be one of the effective methods to solve the issues of shuttling and sluggish redox kinetics of Li PSs owing to the intrinsic tunability of electronic structure.However,cation vacancies are few studied in the Li-S realm due to their complex and rigid preparation methods.In this work,one-step pyrolysis is reported to in situ introduce Fe-vacancies into iron sulfide(Fe_(0.96)S)as a sulfur host.For this host structure,Fe_(0.96)S is first employed as an adsorbent and catalyst in Li-S system.During the carbonization process,a tight contact structure of Fe_(0.96)S crystal and carbon network(Fe_(0.96)S@C)is in situ constructed,and the carbon layer as a conductor provides smooth electrons transfer pathways for redox reactions.Meanwhile,due to the introduction of Fe-vacancies in Fe S crystal,the adsorption capability and catalytic effect for Li PSs have been substantially enhanced.Moreover,the presence of Fe_(0.96)S crystal favors the mobility of electron and diffusion of Li+,which is revealed by the experiments and theoretical calculations.Through synergy respective advantages effect of Fe_(0.96)S and carbon,the Fe_(0.96)S@C-S cathode delivers high-rate capability at 5.0 C and stable long-life performance.Even under a high sulfur loading of 3.5 mg/cm^(2),the durable cyclic stability is still exhibited with the capacity retention of 93%over 400 cycles at 1.0 C,and the coulombic efficiency is≥98%.Noting that this strategy greatly simplifies the synthetic process of currently known cation-vacancy materials and furnishes a universal mentality for designing both divinable and astonishing new cation-vacancy materials. 展开更多
关键词 Cation vacancy Fe_(0.96)S@C structure Catalytic conversion Lithium-sulfur battery
下载PDF
A Universal Atomic Substitution Conversion Strategy Towards Synthesis of Large‑Size Ultrathin Nonlayered Two‑Dimensional Materials 被引量:2
20
作者 Mei Zhao Sijie Yang +10 位作者 Kenan Zhang Lijie Zhang Ping Chen Sanjun Yang Yang Zhao Xiang Ding Xiaotao Zu Yuan Li Yinghe Zhao Liang Qiao Tianyou Zhai 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第11期79-91,共13页
Nonlayered two-dimensional(2D)materials have attracted increasing attention,due to novel physical properties,unique surface structure,and high compatibility with microfabrication technique.However,owing to the inheren... Nonlayered two-dimensional(2D)materials have attracted increasing attention,due to novel physical properties,unique surface structure,and high compatibility with microfabrication technique.However,owing to the inherent strong covalent bonds,the direct synthesis of 2D planar structure from nonlayered materials,especially for the realization of large-size ultrathin 2D nonlayered materials,is still a huge challenge.Here,a general atomic substitution conversion strategy is proposed to synthesize large-size,ultrathin nonlayered 2D materials.Taking nonlayered CdS as a typical example,large-size ultrathin nonlayered CdS single-crystalline flakes are successfully achieved via a facile low-temperature chemical sulfurization method,where pre-grown layered CdI2 flakes are employed as the precursor via a simple hot plate assisted vertical vapor deposition method.The size and thickness of CdS flakes can be controlled by the CdI2 precursor.The growth mechanism is ascribed to the chemical substitution reaction from I to S atoms between CdI2 and CdS,which has been evidenced by experiments and theoretical calculations.The atomic substitution conversion strategy demonstrates that the existing 2D layered materials can serve as the precursor for difficult-to-synthesize nonlayered 2D materials,providing a bridge between layered and nonlayered materials,meanwhile realizing the fabrication of large-size ultrathin nonlayered 2D materials. 展开更多
关键词 Nonlayered 2D materials Large-size ultrathin CdS flakes Atomic substitution conversion Layered-nonlayered structural transformation
下载PDF
上一页 1 2 59 下一页 到第
使用帮助 返回顶部