Functionally graded materials(FGMs)are a novel class of composite materials that have attracted significant attention in the field of engineering due to their unique mechanical properties.This study aims to explore th...Functionally graded materials(FGMs)are a novel class of composite materials that have attracted significant attention in the field of engineering due to their unique mechanical properties.This study aims to explore the dynamic behaviors of an FGM stepped beam with different boundary conditions based on an efficient solving method.Under the assumptions of the Euler-Bernoulli beam theory,the governing differential equations of an individual FGM beam are derived with Hamilton’s principle and decoupled via the separation-of-variable approach.Then,the free and forced vibrations of the FGM stepped beam are solved with the transfer matrix method(TMM).Two models,i.e.,a three-level FGM stepped beam and a five-level FGM stepped beam,are considered,and their natural frequencies and mode shapes are presented.To demonstrate the validity of the method in this paper,the simulation results by ABAQUS are also given.On this basis,the detailed parametric analyses on the frequencies and dynamic responses of the three-level FGM stepped beam are carried out.The results show the accuracy and efficiency of the TMM.展开更多
The Fabry–Perot(FP) resonant cavity is widely used in laser and spectroscopic measurements due to its unique interference transfer function(ITF). In the ideal case of parallel incident light, the ITF of the FP resona...The Fabry–Perot(FP) resonant cavity is widely used in laser and spectroscopic measurements due to its unique interference transfer function(ITF). In the ideal case of parallel incident light, the ITF of the FP resonant cavity can be expressed by the Airy function. However, in reality, it is difficult to achieve perfect parallelism with collimated beams. In this article, a theoretical model is established for non-parallel light incidence, which assumes that the non-parallel incident light is a cone-shaped beam, and the cone angle is used to quantify the non-parallelism of the beam. The transmittance function of the FP resonant cavity under non-parallel light incidence is derived. The accuracy of the model is experimentally verified. Based on this model, the effects of divergence angle, tilt angle and FP cavity parameters(reflectivity, cavity length)on the ITF are studied. The reasons for the decrease in peak value, broadening and asymmetry of the interference peak under non-parallel light incidence are explained. It is suggested that a fine balance between the interference peak and the collimation effect of the incident light should be considered in the design and application of FP resonant cavities, especially for tilted applications such as angle-scanned spectroscopy. The research results of this article have certain significance for the design and application of FP resonant cavities.展开更多
Based on comparative test of two transfer story models, in one of which the transfer beam and basement column is constructed of steel reinforced concrete, and the other is constructed of ordinary reinforced concrete, ...Based on comparative test of two transfer story models, in one of which the transfer beam and basement column is constructed of steel reinforced concrete, and the other is constructed of ordinary reinforced concrete, its force behavior, ductility and failure mechanism under vertical and horizontal loads are studied. The results show that loading bearing and seismic behavior of transfer story structure with steel reinforced concrete beam and basement column is good. The relative design suggestion is put forward.展开更多
The metal transfer mode of electron beam welding (EBW) with filler wire was studied experimentally. The spatial position between the electron beam and the filler wire was defined. Basing on the charge coupled device...The metal transfer mode of electron beam welding (EBW) with filler wire was studied experimentally. The spatial position between the electron beam and the filler wire was defined. Basing on the charge coupled device (CCD) visual sensing system, the metal transfer mode of filler wire was investigated. The results showed that there were five transfer modes during EBW process due to different wire feed rates and spatial positions between beam and filler wire, such as short-circuiting mode, molten metal bridge mode, small droplet mode, big droplet mode and mixed mode. By comparing the weld appearance of different transfer modes, the molten metal bridge transfer was proved to be the best transfer mode.展开更多
Under three-dimensional plane geometrical constraints ( X,Y,θ ), with two asymmetric achromatic sections, the combined three-section structural FODO-like magnet lattice design is adopted and finely optimized in the S...Under three-dimensional plane geometrical constraints ( X,Y,θ ), with two asymmetric achromatic sections, the combined three-section structural FODO-like magnet lattice design is adopted and finely optimized in the SSRF electron-beam transfer lines. The magnet lattice has high flexibility and robustness, and the Courant–Snyder parameters can be easily adjusted within a wide range to meet the requirements of transmission and injection for different operation modes of the linear accelerator, booster synchrotron, and storage ring. In this article, the main parameters of the linear optics design of the SSRF electron-beam transfer lines are described, involving the physical design criteria, the total geometrical layout, the magnet lattice, and the beam Courant–Snyder parameters matching. The studies of the variant beam dynamic simulation program calculations show that the design purpose of the efficient beam transmission and injection will be basically achieved.展开更多
The vibration of an elastic beam experiencing vortex-induced vibration is numerically analyzed employing a wake-oscillator model. The influence of the excited mode, the initial velocity, the shedding pulsation and the...The vibration of an elastic beam experiencing vortex-induced vibration is numerically analyzed employing a wake-oscillator model. The influence of the excited mode, the initial velocity, the shedding pulsation and the mass ratio on the energy transfer among modes and the vibration amplitude is determined. Multiple frequencies are detected, and the power spectral density of the beam tip time series is used to calculate the dominant frequency.展开更多
针对智能反射面(IRS, intelligent reflecting surface)辅助的多输入单输出(MISO, multiple input singleoutput)无线携能通信(SWIPT, simultaneous wireless information and power transfer)系统,考虑基站最大发射功率、IRS反射相移...针对智能反射面(IRS, intelligent reflecting surface)辅助的多输入单输出(MISO, multiple input singleoutput)无线携能通信(SWIPT, simultaneous wireless information and power transfer)系统,考虑基站最大发射功率、IRS反射相移矩阵的单位膜约束和能量接收器的最小能量约束,以最大化信息传输速率为目标,联合优化了基站处的波束成形向量和智能反射面的反射波束成形向量。为解决非凸优化问题,提出了一种基于深度强化学习的深度确定性策略梯度(DDPG, deep deterministic policy gradient)算法。仿真结果表明,DDPG算法的平均奖励与学习率有关,在选取合适的学习率的条件下,DDPG算法能获得与传统优化算法相近的平均互信息,但运行时间明显低于传统的非凸优化算法,即使增加天线数和反射单元数,DDPG算法依然可以在较短的时间内收敛。这说明DDPG算法能有效地提高计算效率,更适合实时性要求较高的通信业务。展开更多
To analyze a multibody system composed of non-uniform beam and spring-mass subsystems, the model discretization is carried on by utilizing the finite element method(FEM), the dynamic model of non-uniform beam is dev...To analyze a multibody system composed of non-uniform beam and spring-mass subsystems, the model discretization is carried on by utilizing the finite element method(FEM), the dynamic model of non-uniform beam is developed by using the transfer matrix method of multibody system(MS-TMM), the transfer matrix of non-u- niform beam is derived, and the natural frequencies are computed. Compared with the numerical assembly method (NAM), the results by MS-TMM have good agreement with the results by FEM, and are better than the results by NAM. When using the high precision method, the global dynamic equations of the complex multibody system are not needed and the orders of involved system matrices are decreased greatly. For the investigation on the re- verse problem of the physical parameter identification of multibody system, MS-TMM and the optimization tech- nology based on genetic algorithms(GAs) are combined and extended. The identification problem is exchanged for an optimization problem, and it is formulated as a global minimum solution of the objective function with respect to natural frequencies of multibody system. At last, the numerical example of non-uniform beam with attach- ments is discussed, and the identification results indicate the feasibility and the effectivity of the proposed aop- proach.展开更多
Compliant mechanisms with curved flexure hinges/beams have potential advantages of small spaces,low stress levels,and flexible design parameters,which have attracted considerable attention in precision engineering,met...Compliant mechanisms with curved flexure hinges/beams have potential advantages of small spaces,low stress levels,and flexible design parameters,which have attracted considerable attention in precision engineering,metamaterials,robotics,and so forth.However,serial-parallel configurations with curved flexure hinges/beams often lead to a complicated parametric design.Here,the transfer matrix method is enabled for analysis of both the kinetostatics and dynamics of general serial-parallel compliant mechanisms without deriving laborious formulas or combining other modeling methods.Consequently,serial-parallel compliant mechanisms with curved flexure hinges/beams can be modeled in a straightforward manner based on a single transfer matrix of Timoshenko straight beams using a step-by-step procedure.Theoretical and numerical validations on two customized XY nanopositioners comprised of straight and corrugated flexure units confirm the concise modeling process and high prediction accuracy of the presented approach.In conclusion,the present study provides an enhanced transfer matrix modeling approach to streamline the kinetostatic and dynamic analyses of general serial-parallel compliant mechanisms and beam structures,including curved flexure hinges and irregular-shaped rigid bodies.展开更多
基金the National Natural Science Foundation of China(Nos.12302007,12372006,and 12202109)the Specific Research Project of Guangxi for Research Bases and Talents(No.AD23026051)。
文摘Functionally graded materials(FGMs)are a novel class of composite materials that have attracted significant attention in the field of engineering due to their unique mechanical properties.This study aims to explore the dynamic behaviors of an FGM stepped beam with different boundary conditions based on an efficient solving method.Under the assumptions of the Euler-Bernoulli beam theory,the governing differential equations of an individual FGM beam are derived with Hamilton’s principle and decoupled via the separation-of-variable approach.Then,the free and forced vibrations of the FGM stepped beam are solved with the transfer matrix method(TMM).Two models,i.e.,a three-level FGM stepped beam and a five-level FGM stepped beam,are considered,and their natural frequencies and mode shapes are presented.To demonstrate the validity of the method in this paper,the simulation results by ABAQUS are also given.On this basis,the detailed parametric analyses on the frequencies and dynamic responses of the three-level FGM stepped beam are carried out.The results show the accuracy and efficiency of the TMM.
基金Project supported by the National Natural Science Foundation of China (Grant No.U19A2044)the National Natural Science Foundation of China (Grant No.41975037)the Key Technologies Research and Development Program of Anhui Province (Grant No.202004i07020013)。
文摘The Fabry–Perot(FP) resonant cavity is widely used in laser and spectroscopic measurements due to its unique interference transfer function(ITF). In the ideal case of parallel incident light, the ITF of the FP resonant cavity can be expressed by the Airy function. However, in reality, it is difficult to achieve perfect parallelism with collimated beams. In this article, a theoretical model is established for non-parallel light incidence, which assumes that the non-parallel incident light is a cone-shaped beam, and the cone angle is used to quantify the non-parallelism of the beam. The transmittance function of the FP resonant cavity under non-parallel light incidence is derived. The accuracy of the model is experimentally verified. Based on this model, the effects of divergence angle, tilt angle and FP cavity parameters(reflectivity, cavity length)on the ITF are studied. The reasons for the decrease in peak value, broadening and asymmetry of the interference peak under non-parallel light incidence are explained. It is suggested that a fine balance between the interference peak and the collimation effect of the incident light should be considered in the design and application of FP resonant cavities, especially for tilted applications such as angle-scanned spectroscopy. The research results of this article have certain significance for the design and application of FP resonant cavities.
文摘Based on comparative test of two transfer story models, in one of which the transfer beam and basement column is constructed of steel reinforced concrete, and the other is constructed of ordinary reinforced concrete, its force behavior, ductility and failure mechanism under vertical and horizontal loads are studied. The results show that loading bearing and seismic behavior of transfer story structure with steel reinforced concrete beam and basement column is good. The relative design suggestion is put forward.
文摘The metal transfer mode of electron beam welding (EBW) with filler wire was studied experimentally. The spatial position between the electron beam and the filler wire was defined. Basing on the charge coupled device (CCD) visual sensing system, the metal transfer mode of filler wire was investigated. The results showed that there were five transfer modes during EBW process due to different wire feed rates and spatial positions between beam and filler wire, such as short-circuiting mode, molten metal bridge mode, small droplet mode, big droplet mode and mixed mode. By comparing the weld appearance of different transfer modes, the molten metal bridge transfer was proved to be the best transfer mode.
基金Supported by National Important Scientific Project "Shanghai Synchrotron Radiation Facility".
文摘Under three-dimensional plane geometrical constraints ( X,Y,θ ), with two asymmetric achromatic sections, the combined three-section structural FODO-like magnet lattice design is adopted and finely optimized in the SSRF electron-beam transfer lines. The magnet lattice has high flexibility and robustness, and the Courant–Snyder parameters can be easily adjusted within a wide range to meet the requirements of transmission and injection for different operation modes of the linear accelerator, booster synchrotron, and storage ring. In this article, the main parameters of the linear optics design of the SSRF electron-beam transfer lines are described, involving the physical design criteria, the total geometrical layout, the magnet lattice, and the beam Courant–Snyder parameters matching. The studies of the variant beam dynamic simulation program calculations show that the design purpose of the efficient beam transmission and injection will be basically achieved.
文摘The vibration of an elastic beam experiencing vortex-induced vibration is numerically analyzed employing a wake-oscillator model. The influence of the excited mode, the initial velocity, the shedding pulsation and the mass ratio on the energy transfer among modes and the vibration amplitude is determined. Multiple frequencies are detected, and the power spectral density of the beam tip time series is used to calculate the dominant frequency.
文摘针对智能反射面(IRS, intelligent reflecting surface)辅助的多输入单输出(MISO, multiple input singleoutput)无线携能通信(SWIPT, simultaneous wireless information and power transfer)系统,考虑基站最大发射功率、IRS反射相移矩阵的单位膜约束和能量接收器的最小能量约束,以最大化信息传输速率为目标,联合优化了基站处的波束成形向量和智能反射面的反射波束成形向量。为解决非凸优化问题,提出了一种基于深度强化学习的深度确定性策略梯度(DDPG, deep deterministic policy gradient)算法。仿真结果表明,DDPG算法的平均奖励与学习率有关,在选取合适的学习率的条件下,DDPG算法能获得与传统优化算法相近的平均互信息,但运行时间明显低于传统的非凸优化算法,即使增加天线数和反射单元数,DDPG算法依然可以在较短的时间内收敛。这说明DDPG算法能有效地提高计算效率,更适合实时性要求较高的通信业务。
基金Supported by the National Natural Science Foundation of China(10902051)the Natural Science Foundation of Jiangsu Province(BK2008046)~~
文摘To analyze a multibody system composed of non-uniform beam and spring-mass subsystems, the model discretization is carried on by utilizing the finite element method(FEM), the dynamic model of non-uniform beam is developed by using the transfer matrix method of multibody system(MS-TMM), the transfer matrix of non-u- niform beam is derived, and the natural frequencies are computed. Compared with the numerical assembly method (NAM), the results by MS-TMM have good agreement with the results by FEM, and are better than the results by NAM. When using the high precision method, the global dynamic equations of the complex multibody system are not needed and the orders of involved system matrices are decreased greatly. For the investigation on the re- verse problem of the physical parameter identification of multibody system, MS-TMM and the optimization tech- nology based on genetic algorithms(GAs) are combined and extended. The identification problem is exchanged for an optimization problem, and it is formulated as a global minimum solution of the objective function with respect to natural frequencies of multibody system. At last, the numerical example of non-uniform beam with attach- ments is discussed, and the identification results indicate the feasibility and the effectivity of the proposed aop- proach.
基金funded by the National Natural Science Foundation of China(Grant/Award Numbers:52075179 and 52130508)Jiangsu Policy Guidance Program(International Science and Technology Cooperation)the Belt and Road Initiative Innovative Cooperation Projects:BZ2021016.
文摘Compliant mechanisms with curved flexure hinges/beams have potential advantages of small spaces,low stress levels,and flexible design parameters,which have attracted considerable attention in precision engineering,metamaterials,robotics,and so forth.However,serial-parallel configurations with curved flexure hinges/beams often lead to a complicated parametric design.Here,the transfer matrix method is enabled for analysis of both the kinetostatics and dynamics of general serial-parallel compliant mechanisms without deriving laborious formulas or combining other modeling methods.Consequently,serial-parallel compliant mechanisms with curved flexure hinges/beams can be modeled in a straightforward manner based on a single transfer matrix of Timoshenko straight beams using a step-by-step procedure.Theoretical and numerical validations on two customized XY nanopositioners comprised of straight and corrugated flexure units confirm the concise modeling process and high prediction accuracy of the presented approach.In conclusion,the present study provides an enhanced transfer matrix modeling approach to streamline the kinetostatic and dynamic analyses of general serial-parallel compliant mechanisms and beam structures,including curved flexure hinges and irregular-shaped rigid bodies.