Resonance effects in parallel jointed rocks subject to stress waves are investigated using transfer functions,derived from signals generated through numerical modelling.Resonance is important for a range of engineerin...Resonance effects in parallel jointed rocks subject to stress waves are investigated using transfer functions,derived from signals generated through numerical modelling.Resonance is important for a range of engineering situations as it identifies the frequency of waves which will be favourably transmitted.Two different numerical methods are used for this study,adopting the finite difference method and the combined discrete element-finite difference method.The numerical models are validated by replicating results from previous studies.The two methods are found to behave similarly and show the same resonance effects;one operating at low frequency and the other operating at relatively high frequency.These resonance effects are interpreted in terms of simple physical systems and analytical equations are derived to predict the resonant frequencies of complex rock masses.Low frequency resonance is shown to be generated by a system synonymous with masses between springs,described as spring resonance,with an equal number of resonant frequencies as the number of blocks.High frequency resonance is generated through superposition of multiple reflected waves developing standing waves within intact blocks,described as superposition resonance.While resonance through superposition has previously been identified,resonance based on masses between springs has not been previously identified in jointed rocks.The findings of this study have implications for future analysis of multiple jointed rock masses,showing that a wave travelling through such materials can induce other modes of propagation of waves,i.e.spring resonance.展开更多
A system of jointly transferring time signals with a rate of 1 pulse per second (PPS) and frequency signals of 10 MHz via a dense wavelength division multiplex-based (DWDM) fiber is demonstrated in this paper. The...A system of jointly transferring time signals with a rate of 1 pulse per second (PPS) and frequency signals of 10 MHz via a dense wavelength division multiplex-based (DWDM) fiber is demonstrated in this paper. The noises of the fiber links are suppressed and compensated for by a controlled fiber delay line. A method of calibrating and characterizing time is described. The 1PPS is synchronized by feed-forward calibrating the fiber delays precisely. The system is experimen- tally examined via a 110 km spooled fiber in laboratory. The frequency stabilities of the user end with compensation are 1.8x 10-14 at 1 s and 2.0x 10-17 at 104 s average time. The calculated uncertainty of time synchronization is 13.1 ps, whereas the direct measurement of the uncertainty is 12 ps. Next, the frequency and 1PPS are transferred via a metropoli- tan area optical fiber network from one central site to two remote sites with distances of 14 km and 110 km. The frequency stabilities of 14 km link reach 3.0x 10-14 averaged in 1 s and 1.4x 10-17 in 104 s respectively; and the stabilities of 110 km link are 8.3 x 10-14 and 1.7 x 10-17, respectively. The accuracies of synchronization are estimated to be 12.3 ps for the 14 km link and 13.1 ps for the 110 km link, respectively.展开更多
Under Chinese law, when parties have signed an equity transfer agreement of the Chinese-Foreign contractual joint venture, they need to report to the examination and approval authority for approval. However, due to im...Under Chinese law, when parties have signed an equity transfer agreement of the Chinese-Foreign contractual joint venture, they need to report to the examination and approval authority for approval. However, due to imperfection of and conflicts among laws and regulations as well as misunderstanding of the above system, it is always difficult for judges to determine the validity of such equity transfer agreement under the administrative approval system. Among the three categories of FIEs provided in Chinese law 1, scholars have had a comprehensive discussion over equity transfer agreement involving Sino-Foreign Equity Joint Venture Enterprises, but this case is concerned with the equity transfer agreement of a Chinese-Foreign contractual joint venture. In this case, the People's Supreme Court holds that the equity transfer agreement that has not undergone the approval procedures are not valid but not void. Furthermore, the parties that are bound to submit the agreement to the approval authority shall perform their duties of this kind.展开更多
Cold metal transfer with polarity⁃exchanging is a new integrated welding technology based on MIG.Due to the alternation of the positive and negative polarities of the wire,favorable control upon the deposition rate an...Cold metal transfer with polarity⁃exchanging is a new integrated welding technology based on MIG.Due to the alternation of the positive and negative polarities of the wire,favorable control upon the deposition rate and the welding shape coefficient was obtained in order to meet the desired joint design,and the related controlling principles and joint characteristics were reported.Droplet transfer physical behavior exhibited strong dependability on the studied welding parameters,such as welding voltage,welding current,wire feeding speed,and polarity⁃exchanging.This welding technology provides a new way for the welding of body⁃in⁃white(BIW)thin sheet with special demands.Moreover,the typical quality defects of MIG were greatly improved.Our study provides important technical information from the perspective of industrial application of MIG and sheds light on the higher application level of MIG in BIW welding.展开更多
The current study aims to ascertain the anatomical feasibility of transferring the contralateral S1 ventral root(VR)to the ipsilateral L5 VR for treating unilateral spastic lower limb paralysis.Six formalin-fixed(thre...The current study aims to ascertain the anatomical feasibility of transferring the contralateral S1 ventral root(VR)to the ipsilateral L5 VR for treating unilateral spastic lower limb paralysis.Six formalin-fixed(three males and three females)cadavers were used.The VR of the contralateral S1 was transferred to the VR of the ipsilateral L5.The sural nerve was selected as a bridge between the donor and recipient nerve.The number of axons,the cross-sectional areas and the pertinent distances between the donor and recipient nerves were measured.The extradural S1 VR and L5 VR could be separated based on anatomical markers of the dorsal root ganglion.The gross distance between the S1 nerve root and L5 nerve root was 31.31(±3.23)mm in the six cadavers,while that on the diffusion tensor imaging was 47.51(±3.23)mm in 60 patients without spinal diseases,and both distances were seperately greater than that between the outlet of S1 from the spinal cord and the ganglion.The numbers of axons in the S1 VRs and L5 VRs were 13414.20(±2890.30)and 10613.20(±2135.58),respectively.The cross-sectional areas of the S1 VR and L5 VR were 1.68(±0.26)mm2 and 1.08(±0.26)mm2,respectively.In conclusion,transfer of the contralateral S1 VR to the ipsilateral L5 VR may be an anatomically feasible treatment option for unilateral spastic lower limb paralysis.展开更多
提出一种从整体到局部优化的风格迁移(global-local based style transfer,G-LST)模型.首先,利用广泛的源端数据进行迭代优化来自动构建高质量的伪平行数据,并通过联合训练来提升模型对整体风格的语义感知;随后,利用常识性知识修正词级...提出一种从整体到局部优化的风格迁移(global-local based style transfer,G-LST)模型.首先,利用广泛的源端数据进行迭代优化来自动构建高质量的伪平行数据,并通过联合训练来提升模型对整体风格的语义感知;随后,利用常识性知识修正词级的细粒度风格来增强局部风格的表现,同时兼顾整体与局部风格,提高风格转换的准确度.基于GYAFC数据集的实验结果表明,相较于目前表现最佳的文本风格迁移模型,G-LST模型在E&M与F&R两个领域数据上的风格转换准确率分别提高了2.70%和4.47%,内容保留与风格准确率的综合指标分别提升了1.18%和1.95%.展开更多
Wireless Power Transfer(WPT)technology can provide real-time power for many terminal devices in Internet of Things(IoT)through millimeterWave(mmWave)to support applications with large capacity and low latency.Although...Wireless Power Transfer(WPT)technology can provide real-time power for many terminal devices in Internet of Things(IoT)through millimeterWave(mmWave)to support applications with large capacity and low latency.Although the intelligent reflecting surface(IRS)can be adopted to create effective virtual links to address the mmWave blockage problem,the conventional solutions only adopt IRS in the downlink from the Base Station(BS)to the users to enhance the received signal strength.In practice,the reflection of IRS is also applicable to the uplink to improve the spectral efficiency.It is a challenging to jointly optimize IRS beamforming and system resource allocation for wireless energy acquisition and information transmission.In this paper,we first design a Low-Energy Adaptive Clustering Hierarchy(LEACH)clustering protocol for clustering and data collection.Then,the problem of maximizing the minimum system spectral efficiency is constructed by jointly optimizing the transmit power of sensor devices,the uplink and downlink transmission times,the active beamforming at the BS,and the IRS dynamic beamforming.To solve this non-convex optimization problem,we propose an alternating optimization(AO)-based joint solution algorithm.Simulation results show that the use of IRS dynamic beamforming can significantly improve the spectral efficiency of the system,and ensure the reliability of equipment communication and the sustainability of energy supply under NLOS link.展开更多
基金supported by the Engineering and Physical Sciences Research Council(EPSRC)(EP/R513258/1).
文摘Resonance effects in parallel jointed rocks subject to stress waves are investigated using transfer functions,derived from signals generated through numerical modelling.Resonance is important for a range of engineering situations as it identifies the frequency of waves which will be favourably transmitted.Two different numerical methods are used for this study,adopting the finite difference method and the combined discrete element-finite difference method.The numerical models are validated by replicating results from previous studies.The two methods are found to behave similarly and show the same resonance effects;one operating at low frequency and the other operating at relatively high frequency.These resonance effects are interpreted in terms of simple physical systems and analytical equations are derived to predict the resonant frequencies of complex rock masses.Low frequency resonance is shown to be generated by a system synonymous with masses between springs,described as spring resonance,with an equal number of resonant frequencies as the number of blocks.High frequency resonance is generated through superposition of multiple reflected waves developing standing waves within intact blocks,described as superposition resonance.While resonance through superposition has previously been identified,resonance based on masses between springs has not been previously identified in jointed rocks.The findings of this study have implications for future analysis of multiple jointed rock masses,showing that a wave travelling through such materials can induce other modes of propagation of waves,i.e.spring resonance.
基金supported by the National Natural Science Foundation of China(Grant No.61405227)
文摘A system of jointly transferring time signals with a rate of 1 pulse per second (PPS) and frequency signals of 10 MHz via a dense wavelength division multiplex-based (DWDM) fiber is demonstrated in this paper. The noises of the fiber links are suppressed and compensated for by a controlled fiber delay line. A method of calibrating and characterizing time is described. The 1PPS is synchronized by feed-forward calibrating the fiber delays precisely. The system is experimen- tally examined via a 110 km spooled fiber in laboratory. The frequency stabilities of the user end with compensation are 1.8x 10-14 at 1 s and 2.0x 10-17 at 104 s average time. The calculated uncertainty of time synchronization is 13.1 ps, whereas the direct measurement of the uncertainty is 12 ps. Next, the frequency and 1PPS are transferred via a metropoli- tan area optical fiber network from one central site to two remote sites with distances of 14 km and 110 km. The frequency stabilities of 14 km link reach 3.0x 10-14 averaged in 1 s and 1.4x 10-17 in 104 s respectively; and the stabilities of 110 km link are 8.3 x 10-14 and 1.7 x 10-17, respectively. The accuracies of synchronization are estimated to be 12.3 ps for the 14 km link and 13.1 ps for the 110 km link, respectively.
文摘Under Chinese law, when parties have signed an equity transfer agreement of the Chinese-Foreign contractual joint venture, they need to report to the examination and approval authority for approval. However, due to imperfection of and conflicts among laws and regulations as well as misunderstanding of the above system, it is always difficult for judges to determine the validity of such equity transfer agreement under the administrative approval system. Among the three categories of FIEs provided in Chinese law 1, scholars have had a comprehensive discussion over equity transfer agreement involving Sino-Foreign Equity Joint Venture Enterprises, but this case is concerned with the equity transfer agreement of a Chinese-Foreign contractual joint venture. In this case, the People's Supreme Court holds that the equity transfer agreement that has not undergone the approval procedures are not valid but not void. Furthermore, the parties that are bound to submit the agreement to the approval authority shall perform their duties of this kind.
文摘Cold metal transfer with polarity⁃exchanging is a new integrated welding technology based on MIG.Due to the alternation of the positive and negative polarities of the wire,favorable control upon the deposition rate and the welding shape coefficient was obtained in order to meet the desired joint design,and the related controlling principles and joint characteristics were reported.Droplet transfer physical behavior exhibited strong dependability on the studied welding parameters,such as welding voltage,welding current,wire feeding speed,and polarity⁃exchanging.This welding technology provides a new way for the welding of body⁃in⁃white(BIW)thin sheet with special demands.Moreover,the typical quality defects of MIG were greatly improved.Our study provides important technical information from the perspective of industrial application of MIG and sheds light on the higher application level of MIG in BIW welding.
基金supported by the National Natural Science Foundation of China(Grant No.81871773).
文摘The current study aims to ascertain the anatomical feasibility of transferring the contralateral S1 ventral root(VR)to the ipsilateral L5 VR for treating unilateral spastic lower limb paralysis.Six formalin-fixed(three males and three females)cadavers were used.The VR of the contralateral S1 was transferred to the VR of the ipsilateral L5.The sural nerve was selected as a bridge between the donor and recipient nerve.The number of axons,the cross-sectional areas and the pertinent distances between the donor and recipient nerves were measured.The extradural S1 VR and L5 VR could be separated based on anatomical markers of the dorsal root ganglion.The gross distance between the S1 nerve root and L5 nerve root was 31.31(±3.23)mm in the six cadavers,while that on the diffusion tensor imaging was 47.51(±3.23)mm in 60 patients without spinal diseases,and both distances were seperately greater than that between the outlet of S1 from the spinal cord and the ganglion.The numbers of axons in the S1 VRs and L5 VRs were 13414.20(±2890.30)and 10613.20(±2135.58),respectively.The cross-sectional areas of the S1 VR and L5 VR were 1.68(±0.26)mm2 and 1.08(±0.26)mm2,respectively.In conclusion,transfer of the contralateral S1 VR to the ipsilateral L5 VR may be an anatomically feasible treatment option for unilateral spastic lower limb paralysis.
文摘提出一种从整体到局部优化的风格迁移(global-local based style transfer,G-LST)模型.首先,利用广泛的源端数据进行迭代优化来自动构建高质量的伪平行数据,并通过联合训练来提升模型对整体风格的语义感知;随后,利用常识性知识修正词级的细粒度风格来增强局部风格的表现,同时兼顾整体与局部风格,提高风格转换的准确度.基于GYAFC数据集的实验结果表明,相较于目前表现最佳的文本风格迁移模型,G-LST模型在E&M与F&R两个领域数据上的风格转换准确率分别提高了2.70%和4.47%,内容保留与风格准确率的综合指标分别提升了1.18%和1.95%.
基金supported by the National Natural Science Foundation of China 62001051.
文摘Wireless Power Transfer(WPT)technology can provide real-time power for many terminal devices in Internet of Things(IoT)through millimeterWave(mmWave)to support applications with large capacity and low latency.Although the intelligent reflecting surface(IRS)can be adopted to create effective virtual links to address the mmWave blockage problem,the conventional solutions only adopt IRS in the downlink from the Base Station(BS)to the users to enhance the received signal strength.In practice,the reflection of IRS is also applicable to the uplink to improve the spectral efficiency.It is a challenging to jointly optimize IRS beamforming and system resource allocation for wireless energy acquisition and information transmission.In this paper,we first design a Low-Energy Adaptive Clustering Hierarchy(LEACH)clustering protocol for clustering and data collection.Then,the problem of maximizing the minimum system spectral efficiency is constructed by jointly optimizing the transmit power of sensor devices,the uplink and downlink transmission times,the active beamforming at the BS,and the IRS dynamic beamforming.To solve this non-convex optimization problem,we propose an alternating optimization(AO)-based joint solution algorithm.Simulation results show that the use of IRS dynamic beamforming can significantly improve the spectral efficiency of the system,and ensure the reliability of equipment communication and the sustainability of energy supply under NLOS link.