In this article,the experimental and finite element analysis is utilized to investigate the quasi-static compression features of sandwich constructions built with tapered tubes.3D printing technology was utilized to c...In this article,the experimental and finite element analysis is utilized to investigate the quasi-static compression features of sandwich constructions built with tapered tubes.3D printing technology was utilized to create the hollow centers of the tapering tubes,with and without corrugations.The results demonstrate that the energy absorption(EA)and specific energy absorption(SEA)of the single corrugated tapered tube sandwich are 51.6% and 19.8% higher,respectively,than those of the conical tube sandwich.Furthermore,the results demonstrate that energy absorbers can benefit from corrugation in order to increase their efficiency.Additionally,the tapered corrugated tubes'resistance to oblique impacts was studied.Compared to a straight tube,the tapered tube is more resistant to oblique loads and has a lower initial peak crushing force(PCF),according to numerical simulations.After conducting a parametric study,it was discovered that the energy absorption performance of the sandwich construction is significantly affected by the amplitude,number of corrugations,and wall thickness.EA and SEA of DTS with corrugation number of 8 increased by 17.4%and 29.6%,respectively,while PCF decreased by 9.2% compared to DTS with corrugation number of 10.展开更多
A novel slotted helix slow-wave structure (SWS) is proposed to develop a high power, wide-bandwidth, and high reliability millimeter-wave traveling-wave tube (TWT). This novel structure, which has higher heat capa...A novel slotted helix slow-wave structure (SWS) is proposed to develop a high power, wide-bandwidth, and high reliability millimeter-wave traveling-wave tube (TWT). This novel structure, which has higher heat capacity than a conven- tional helix SWS, evolves from conventional helix SWS with three parallel rows of rectangular slots made in the outside of the helix tape. In this paper, the electromagnetic characteristics and the beam-wave interaction of this novel structure operating in the Ka-band are investigated. From our calculations, when the designed beam voltage and beam current are set to be 18.45 kV and 0.2 A, respectively, this novel circuit can produce over 700-W average output power in a frequency range from 27.5 GHz to 32.5 GHz, and the corresponding conversion efficiency values vary from 19% to 21.3%, and the maximum output power is 787 W at 30 GHz.展开更多
When evaluating the seismic safety and reliability of complex engineering structures,it is a critical problem to reasonably consider the randomness and multi-dimensional nature of ground motions.To this end,a proposed...When evaluating the seismic safety and reliability of complex engineering structures,it is a critical problem to reasonably consider the randomness and multi-dimensional nature of ground motions.To this end,a proposed modeling strategy of multi-dimensional stochastic earthquakes is addressed in this study.This improved seismic model has several merits that enable it to better provide seismic analyses of structures.Specifically,at first,the ground motion model is compatible with the design response spectrum.Secondly,the evolutionary power spectrum involved in the model and the design response spectrum are constructed accordingly with sufficient consideration of the correlation between different seismic components.Thirdly,the random function-based dimension-reduction representation is applied,by which seismic modeling is established,with three elementary random variables.Numerical simulations of multi-dimensional stochastic ground motions in a specific design scenario indicate the effectiveness of the proposed modeling strategy.Moreover,the multi-dimensional seismic response and the global reliability of a high-rise frame-core tube structure is discussed in detail to further illustrate the engineering applicability of the proposed method.The analytical investigations demonstrate that the suggested stochastic model of multi-dimensional ground motion is available for accurate seismic response analysis and dynamic reliability assessment of complex engineering structures for performance-based seismic resistance design.展开更多
Super-highly reinforced concrete tube in tube structure is a developing structure system of high-rise building. The more reasonable derivation process of the multi-vertical-line-element model stiffness matrix is given...Super-highly reinforced concrete tube in tube structure is a developing structure system of high-rise building. The more reasonable derivation process of the multi-vertical-line-element model stiffness matrix is given.On the premise of pointing out the problems of present multi-spring element model, combined with present multivertical-line-element model for analyzing on shear wall, the model is expanded to spatial one, and the stiffness matrix of which is derived. Combined with hysteretic axial model and hysteretic shear model, it is suitable for columns,wall limbs and beams with all kinds of section form. Some examples are calculated and compared with test results,which shows that the models have relatively good accuracy. On the base of the experimental phenomenon and failure mechanism for tube in tube structure specimen, nonlinear seismic responses analysis program on the basis of the advantaged element model for tube in tube structure is developed. Calculation results are in good agreement with those of the pseudo-dynamic tests and the failure mechanism can be well reflected.展开更多
The number and distribution of the singular points of streamlines in the cross-section of steady flow through a curved tube ate discussed by using the method of topological structure analysis. And a theoretical criter...The number and distribution of the singular points of streamlines in the cross-section of steady flow through a curved tube ate discussed by using the method of topological structure analysis. And a theoretical criterion is obtained for the bifurcation of flow vortexes for the secondary flow turning from two-vortex structure into four-vortex structure. Furthermore, the critical Dean number for bifurcation and the semi-analytical expressions of stream function and axial velocity are given by using Galerkin technique. The result of calculation is consistent with the theoretical criterion.展开更多
Shaking table tests of a 1:10 scale arch model performed to investigate the seismic behavior and resistance of concrete filled steel tubular (CFT) arch structures are described in this paper. The El-Centro record and ...Shaking table tests of a 1:10 scale arch model performed to investigate the seismic behavior and resistance of concrete filled steel tubular (CFT) arch structures are described in this paper. The El-Centro record and Shanghai artificial wave were adopted as the input excitation. The entire test process can be divided into three stages depending on the lateral brace configurations, i.e., fully (five) braced, two braces removed, and all braces removed. A total of 46 tests, starting from the elastic state to failure condition, have been conducted. The natural vibration frequencies, responses of acceleration, displacement and strain were measured. From the test results, it is demonstrated that the CFT arch structures are capable of resisting severe ground motions and that CFT arches offer a credible alternative to reinforced concrete arches, especially in regions of high seismic intensity.展开更多
Thin-walled structures have been used in many fields due to their superior mechanical properties.In this paper,two types of hierarchical multi-cell tubes,inspired by the self-similarity of Pinus sylvestris,are propose...Thin-walled structures have been used in many fields due to their superior mechanical properties.In this paper,two types of hierarchical multi-cell tubes,inspired by the self-similarity of Pinus sylvestris,are proposed to enhance structural energy absorption performance.The finite element models of the hierarchical structures are established to validate the crashworthiness performance under axial dynamic load.The theoreticalmodel of themean crushing force is also derived based on the simplified super folded element theory.The finite element results demonstrate that the energy absorption characteristics and deformation mode of the bionic hierarchical thin-walled tubes are further improved with the increase of hierarchical sub-structures.It can be also obtained that the energy absorption performance of corner self-similar tubes is better than edge self-similar tubes.Furthermore,multiobjective optimization of the hierarchical tubes is constructed by employing the response surface method and genetic algorithm,and the corresponding Pareto front diagram is obtained.This research provides a new idea for the crashworthiness design of thin-walled structures.展开更多
The assembled form of thick-wall glass fiber reinforced plastics (GFRP) tube and 0Cr18Ni9 austenitic stainless steel pipes was designed as the radius thermal-insulating and load-supporting structure in cryogenic vesse...The assembled form of thick-wall glass fiber reinforced plastics (GFRP) tube and 0Cr18Ni9 austenitic stainless steel pipes was designed as the radius thermal-insulating and load-supporting structure in cryogenic vessels. In order to study the thermal leakage and gap changes on the support structure, as well as radius temperature and stress distribution on GFRP tube, an experimental investigation has been taken. The results indicate that the support structure is proved to fit well as thermal-insulating and load-supporting part in cryo-genic vessels, furthermore has high security during cryogenic applications.展开更多
In China, the stress analysis of tubular joints for offshore structures was started at the end of 1970's. In addition to simple joints, the ring stiffened tubular joint have been analyzed recently. In this paper, ...In China, the stress analysis of tubular joints for offshore structures was started at the end of 1970's. In addition to simple joints, the ring stiffened tubular joint have been analyzed recently. In this paper, the author reviews the research work of stress analysis of ring stiffened joints, including brief introduction to the methods used, stress concentration behaviour, effects of ring stiffeners' number, location, dimension, type and stress distribution of ring stiffeners. Emperical formulae for predicting SCF of ring stiffened joints are also presented.展开更多
Measurement of out-of-plane deformation is significant to understanding of the deflection mechanisms of the plate and tube structures.In this study,a new surface contouring technique with color structured light is app...Measurement of out-of-plane deformation is significant to understanding of the deflection mechanisms of the plate and tube structures.In this study,a new surface contouring technique with color structured light is applied to measure the out-of-plane deformation of structures with one-shot projection.Through color fringe recognizing,decoding and triangulation processing for the captured images corresponding to each deformation state,the feasibility of the method is testified by the measurement of elastic deflections of a flexible square plate,showing good agreement with those from the calibrated displacement driver.The plastic deformation of two alloy aluminum rectangular tubes is measured to show the technique application to surface topographic evaluation of the buckling structures with large displacements.展开更多
In order to improve the performance of vehicle radiators, a two-dimensional heat transfer steady-state model of the radiator was set up. The influence of the structural parameters (axial ratio) of the heat exchange tu...In order to improve the performance of vehicle radiators, a two-dimensional heat transfer steady-state model of the radiator was set up. The influence of the structural parameters (axial ratio) of the heat exchange tube on the windward side on the heat transfer performance of the radiator was studied. With the increase of the axial ratio of the heat exchange tube on the windward side, the heat exchange capacity of the heat exchange tube surface slightly decreases. The heat exchange area increases significantly, which increases the total heat exchange of the radiator and improves the heat transfer performance of the radiator. When the axial ratio increases from 1.0 to 2.0, the average surface heat transfer capacity decreases from 5664.16</span><span style="font-family:""> </span><span style="font-family:Verdana;">W/m<sup>2</sup> to 5623.57</span><span style="font-family:""> </span><span style="font-family:Verdana;">W/m<sup>2</sup>.展开更多
基金the grants from the National Natural Science Foundation of China(Nos.52078152 and 12002095)Guangzhou Government-University Union Fund(No.202201020532)。
文摘In this article,the experimental and finite element analysis is utilized to investigate the quasi-static compression features of sandwich constructions built with tapered tubes.3D printing technology was utilized to create the hollow centers of the tapering tubes,with and without corrugations.The results demonstrate that the energy absorption(EA)and specific energy absorption(SEA)of the single corrugated tapered tube sandwich are 51.6% and 19.8% higher,respectively,than those of the conical tube sandwich.Furthermore,the results demonstrate that energy absorbers can benefit from corrugation in order to increase their efficiency.Additionally,the tapered corrugated tubes'resistance to oblique impacts was studied.Compared to a straight tube,the tapered tube is more resistant to oblique loads and has a lower initial peak crushing force(PCF),according to numerical simulations.After conducting a parametric study,it was discovered that the energy absorption performance of the sandwich construction is significantly affected by the amplitude,number of corrugations,and wall thickness.EA and SEA of DTS with corrugation number of 8 increased by 17.4%and 29.6%,respectively,while PCF decreased by 9.2% compared to DTS with corrugation number of 10.
基金Project supported by the National Natural Science Foundation of China(Grant No.61271029)the Natural Science Key Laboratory Foundationthe Natural Science Fund for Distinguished Young Scholars of China(Grant No.61125103)
文摘A novel slotted helix slow-wave structure (SWS) is proposed to develop a high power, wide-bandwidth, and high reliability millimeter-wave traveling-wave tube (TWT). This novel structure, which has higher heat capacity than a conven- tional helix SWS, evolves from conventional helix SWS with three parallel rows of rectangular slots made in the outside of the helix tape. In this paper, the electromagnetic characteristics and the beam-wave interaction of this novel structure operating in the Ka-band are investigated. From our calculations, when the designed beam voltage and beam current are set to be 18.45 kV and 0.2 A, respectively, this novel circuit can produce over 700-W average output power in a frequency range from 27.5 GHz to 32.5 GHz, and the corresponding conversion efficiency values vary from 19% to 21.3%, and the maximum output power is 787 W at 30 GHz.
基金National Natural Science Foundation of China under Grant Nos.51978543,52108444,and 51778343Plan of Outstanding Young and Middle-aged Scientific and Technological Innovation Team in the Universities of Hubei Province with Project No.T2020010Natural Science Foundation of Hebei Province under Grant No.E2021512001。
文摘When evaluating the seismic safety and reliability of complex engineering structures,it is a critical problem to reasonably consider the randomness and multi-dimensional nature of ground motions.To this end,a proposed modeling strategy of multi-dimensional stochastic earthquakes is addressed in this study.This improved seismic model has several merits that enable it to better provide seismic analyses of structures.Specifically,at first,the ground motion model is compatible with the design response spectrum.Secondly,the evolutionary power spectrum involved in the model and the design response spectrum are constructed accordingly with sufficient consideration of the correlation between different seismic components.Thirdly,the random function-based dimension-reduction representation is applied,by which seismic modeling is established,with three elementary random variables.Numerical simulations of multi-dimensional stochastic ground motions in a specific design scenario indicate the effectiveness of the proposed modeling strategy.Moreover,the multi-dimensional seismic response and the global reliability of a high-rise frame-core tube structure is discussed in detail to further illustrate the engineering applicability of the proposed method.The analytical investigations demonstrate that the suggested stochastic model of multi-dimensional ground motion is available for accurate seismic response analysis and dynamic reliability assessment of complex engineering structures for performance-based seismic resistance design.
文摘Super-highly reinforced concrete tube in tube structure is a developing structure system of high-rise building. The more reasonable derivation process of the multi-vertical-line-element model stiffness matrix is given.On the premise of pointing out the problems of present multi-spring element model, combined with present multivertical-line-element model for analyzing on shear wall, the model is expanded to spatial one, and the stiffness matrix of which is derived. Combined with hysteretic axial model and hysteretic shear model, it is suitable for columns,wall limbs and beams with all kinds of section form. Some examples are calculated and compared with test results,which shows that the models have relatively good accuracy. On the base of the experimental phenomenon and failure mechanism for tube in tube structure specimen, nonlinear seismic responses analysis program on the basis of the advantaged element model for tube in tube structure is developed. Calculation results are in good agreement with those of the pseudo-dynamic tests and the failure mechanism can be well reflected.
文摘The number and distribution of the singular points of streamlines in the cross-section of steady flow through a curved tube ate discussed by using the method of topological structure analysis. And a theoretical criterion is obtained for the bifurcation of flow vortexes for the secondary flow turning from two-vortex structure into four-vortex structure. Furthermore, the critical Dean number for bifurcation and the semi-analytical expressions of stream function and axial velocity are given by using Galerkin technique. The result of calculation is consistent with the theoretical criterion.
基金This study was supported by the National Natural Science Foundation of China under Grant No.50078016Open Funding of State Key Laboratory for Disaster Reduction in Civil Engineering,China.
文摘Shaking table tests of a 1:10 scale arch model performed to investigate the seismic behavior and resistance of concrete filled steel tubular (CFT) arch structures are described in this paper. The El-Centro record and Shanghai artificial wave were adopted as the input excitation. The entire test process can be divided into three stages depending on the lateral brace configurations, i.e., fully (five) braced, two braces removed, and all braces removed. A total of 46 tests, starting from the elastic state to failure condition, have been conducted. The natural vibration frequencies, responses of acceleration, displacement and strain were measured. From the test results, it is demonstrated that the CFT arch structures are capable of resisting severe ground motions and that CFT arches offer a credible alternative to reinforced concrete arches, especially in regions of high seismic intensity.
基金The authors are grateful to the National Natural Science Foundation of China(Grant No.11902183)the Doctoral Research Foundation of Shandong University of Technology(Grant No.4041/418017).
文摘Thin-walled structures have been used in many fields due to their superior mechanical properties.In this paper,two types of hierarchical multi-cell tubes,inspired by the self-similarity of Pinus sylvestris,are proposed to enhance structural energy absorption performance.The finite element models of the hierarchical structures are established to validate the crashworthiness performance under axial dynamic load.The theoreticalmodel of themean crushing force is also derived based on the simplified super folded element theory.The finite element results demonstrate that the energy absorption characteristics and deformation mode of the bionic hierarchical thin-walled tubes are further improved with the increase of hierarchical sub-structures.It can be also obtained that the energy absorption performance of corner self-similar tubes is better than edge self-similar tubes.Furthermore,multiobjective optimization of the hierarchical tubes is constructed by employing the response surface method and genetic algorithm,and the corresponding Pareto front diagram is obtained.This research provides a new idea for the crashworthiness design of thin-walled structures.
文摘The assembled form of thick-wall glass fiber reinforced plastics (GFRP) tube and 0Cr18Ni9 austenitic stainless steel pipes was designed as the radius thermal-insulating and load-supporting structure in cryogenic vessels. In order to study the thermal leakage and gap changes on the support structure, as well as radius temperature and stress distribution on GFRP tube, an experimental investigation has been taken. The results indicate that the support structure is proved to fit well as thermal-insulating and load-supporting part in cryo-genic vessels, furthermore has high security during cryogenic applications.
文摘In China, the stress analysis of tubular joints for offshore structures was started at the end of 1970's. In addition to simple joints, the ring stiffened tubular joint have been analyzed recently. In this paper, the author reviews the research work of stress analysis of ring stiffened joints, including brief introduction to the methods used, stress concentration behaviour, effects of ring stiffeners' number, location, dimension, type and stress distribution of ring stiffeners. Emperical formulae for predicting SCF of ring stiffened joints are also presented.
文摘Measurement of out-of-plane deformation is significant to understanding of the deflection mechanisms of the plate and tube structures.In this study,a new surface contouring technique with color structured light is applied to measure the out-of-plane deformation of structures with one-shot projection.Through color fringe recognizing,decoding and triangulation processing for the captured images corresponding to each deformation state,the feasibility of the method is testified by the measurement of elastic deflections of a flexible square plate,showing good agreement with those from the calibrated displacement driver.The plastic deformation of two alloy aluminum rectangular tubes is measured to show the technique application to surface topographic evaluation of the buckling structures with large displacements.
文摘In order to improve the performance of vehicle radiators, a two-dimensional heat transfer steady-state model of the radiator was set up. The influence of the structural parameters (axial ratio) of the heat exchange tube on the windward side on the heat transfer performance of the radiator was studied. With the increase of the axial ratio of the heat exchange tube on the windward side, the heat exchange capacity of the heat exchange tube surface slightly decreases. The heat exchange area increases significantly, which increases the total heat exchange of the radiator and improves the heat transfer performance of the radiator. When the axial ratio increases from 1.0 to 2.0, the average surface heat transfer capacity decreases from 5664.16</span><span style="font-family:""> </span><span style="font-family:Verdana;">W/m<sup>2</sup> to 5623.57</span><span style="font-family:""> </span><span style="font-family:Verdana;">W/m<sup>2</sup>.