During the last decade, metal-organic frameworks(MOFs) have been applied in various fields due to their unique chemical and functional advantages. One of the widespread research hotspots is MOF-based membranes for sep...During the last decade, metal-organic frameworks(MOFs) have been applied in various fields due to their unique chemical and functional advantages. One of the widespread research hotspots is MOF-based membranes for separations, specifically continuous defect-free MOF membranes, which are usually grown on porous substrates. The substrate not only serves as the MOF layer support but also has a great influence on the membrane fabrication process and the final separation performance of the resultant membrane. In this review, we mainly introduce the progress focused on the substrates for MOF membranes fabrication. The substrate modifications and seeding methods aimed at synthesizing highquality MOF membranes are also summarized systematically.展开更多
Developing laminar composite solid electrolyte with ultrathin thickness and continuous conduction channels in vertical direction holds great promise for all-solid-state lithium batteries.Herein,a thin,laminar solid el...Developing laminar composite solid electrolyte with ultrathin thickness and continuous conduction channels in vertical direction holds great promise for all-solid-state lithium batteries.Herein,a thin,laminar solid electrolyte is synthesized by filtrating–NH 2 functionalized metal-organic framework nanosheets and then being threaded with poly(ethylene oxide)chains induced by the hydrogen-bonding interaction from–NH_(2) groups.It is demonstrated that the threaded poly(ethylene oxide)chains lock the adjacent metal-organic framework nanosheets,giving highly enhanced structural stability(Young’s modulus,1.3 GPa)to 7.5-μm-thick laminar composite solid electrolyte.Importantly,these poly(ethylene oxide)chains with stretching structure serve as continuous conduction pathways along the chains in pores.It makes the non-conduction laminar metal-organic framework electrolyte highly conductive:3.97×10^(−5) S cm^(−1) at 25℃,which is even over 25 times higher than that of pure poly(ethylene oxide)electrolyte.The assembled lithium cell,thus,acquires superior cycling stability,initial discharge capacity(148 mAh g^(−1) at 0.5 C and 60℃),and retention(94% after 150 cycles).Besides,the pore size of nanosheet is tailored(24.5–40.9˚A)to evaluate the mechanisms of chain conformation and ion transport in confined space.It shows that the confined pore only with proper size could facilitate the stretching of poly(ethylene oxide)chains,and meanwhile inhibit their disorder degree.Specifically,the pore size of 33.8˚A shows optimized confinement effect with trans-poly(ethylene oxide)and cis-poly(ethylene oxide)conformation,which offers great significance in ion conduction.Our design of poly(ethylene oxide)-threaded architecture provides a platform and paves a way to the rational design of next-generation high-performance porous electrolytes.展开更多
The integration of organic and inorganic materials has been widely used in various applications to generate novel functional nanomaterials characterized by unique properties.Functional crystalline framework nanosheets...The integration of organic and inorganic materials has been widely used in various applications to generate novel functional nanomaterials characterized by unique properties.Functional crystalline framework nanosheets and their synergistic effects have been studied recently for possessing the advantages of functional species as well as crystalline framework nanosheets.Hence,we have focused on the preparation methods and applications of functional crystalline framework nanosheets in this review.We introduced crystalline framework nanosheets and discussed the importance of integrating functional species with nanosheets to form functional crystalline framework nanosheets.Then,two aspects of the preparation methods of functional crystalline framework nanosheets were reviewed:in situ synthesis and post-synthesis modification.Subsequently,we discussed the properties of the crystalline framework nanosheets combined with various functional species and summarized their applications in catalysis,sensing,separation,and energy storage.Finally,we have shared our insights on the challenges of functional crystalline framework nanosheets,hoping to contribute to the knowledge base for optimizing the preparation methods,expanding categories,improving stability,and exploring potential applications.展开更多
基金the funding from the National Natural Science Foundation of China (22078107, 22022805)the National Key Research and Development Program (2021YFB3802500)。
文摘During the last decade, metal-organic frameworks(MOFs) have been applied in various fields due to their unique chemical and functional advantages. One of the widespread research hotspots is MOF-based membranes for separations, specifically continuous defect-free MOF membranes, which are usually grown on porous substrates. The substrate not only serves as the MOF layer support but also has a great influence on the membrane fabrication process and the final separation performance of the resultant membrane. In this review, we mainly introduce the progress focused on the substrates for MOF membranes fabrication. The substrate modifications and seeding methods aimed at synthesizing highquality MOF membranes are also summarized systematically.
基金The authors would like to acknowledge the financial support from National Nat-ural Science Foundation of China (U2004199)Excellent Youth Foundation of Henan Province (202300410373)+2 种基金China Postdoctoral Science Foundation (2021T140615 and 2020M672281)Natural Science Foundation of Henan Province (212300410285)Young Talent Support Project of Henan Province(2021HYTP028).
文摘Developing laminar composite solid electrolyte with ultrathin thickness and continuous conduction channels in vertical direction holds great promise for all-solid-state lithium batteries.Herein,a thin,laminar solid electrolyte is synthesized by filtrating–NH 2 functionalized metal-organic framework nanosheets and then being threaded with poly(ethylene oxide)chains induced by the hydrogen-bonding interaction from–NH_(2) groups.It is demonstrated that the threaded poly(ethylene oxide)chains lock the adjacent metal-organic framework nanosheets,giving highly enhanced structural stability(Young’s modulus,1.3 GPa)to 7.5-μm-thick laminar composite solid electrolyte.Importantly,these poly(ethylene oxide)chains with stretching structure serve as continuous conduction pathways along the chains in pores.It makes the non-conduction laminar metal-organic framework electrolyte highly conductive:3.97×10^(−5) S cm^(−1) at 25℃,which is even over 25 times higher than that of pure poly(ethylene oxide)electrolyte.The assembled lithium cell,thus,acquires superior cycling stability,initial discharge capacity(148 mAh g^(−1) at 0.5 C and 60℃),and retention(94% after 150 cycles).Besides,the pore size of nanosheet is tailored(24.5–40.9˚A)to evaluate the mechanisms of chain conformation and ion transport in confined space.It shows that the confined pore only with proper size could facilitate the stretching of poly(ethylene oxide)chains,and meanwhile inhibit their disorder degree.Specifically,the pore size of 33.8˚A shows optimized confinement effect with trans-poly(ethylene oxide)and cis-poly(ethylene oxide)conformation,which offers great significance in ion conduction.Our design of poly(ethylene oxide)-threaded architecture provides a platform and paves a way to the rational design of next-generation high-performance porous electrolytes.
基金financially supported by the National Natural Science Foundation of China (Nos.21727808,21971114,21908105,and 22205100)the Jiangsu Provincial Funds for Natural Science Foundation (No.BK20200090)。
文摘The integration of organic and inorganic materials has been widely used in various applications to generate novel functional nanomaterials characterized by unique properties.Functional crystalline framework nanosheets and their synergistic effects have been studied recently for possessing the advantages of functional species as well as crystalline framework nanosheets.Hence,we have focused on the preparation methods and applications of functional crystalline framework nanosheets in this review.We introduced crystalline framework nanosheets and discussed the importance of integrating functional species with nanosheets to form functional crystalline framework nanosheets.Then,two aspects of the preparation methods of functional crystalline framework nanosheets were reviewed:in situ synthesis and post-synthesis modification.Subsequently,we discussed the properties of the crystalline framework nanosheets combined with various functional species and summarized their applications in catalysis,sensing,separation,and energy storage.Finally,we have shared our insights on the challenges of functional crystalline framework nanosheets,hoping to contribute to the knowledge base for optimizing the preparation methods,expanding categories,improving stability,and exploring potential applications.