期刊文献+
共找到35,230篇文章
< 1 2 250 >
每页显示 20 50 100
Efficient proton conduction in porous and crystalline covalent-organic frameworks(COFs)
1
作者 Liyu Zhu Huatai Zhu +2 位作者 Luying Wang Jiandu Lei Jing Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第7期198-218,I0005,共22页
To attain the objectives of carbon peaking and carbon neutrality,the development of stable and highperformance ion-conducting materials holds enormous relevance in various energy storage and conversion devices.Particu... To attain the objectives of carbon peaking and carbon neutrality,the development of stable and highperformance ion-conducting materials holds enormous relevance in various energy storage and conversion devices.Particularly,crystalline porous materials possessing built-in ordered nanochannels exhibit remarkable superiority in comprehending the ion transfer mechanisms with precision.In this regard,covalent organic frameworks(COFs)are highly regarded as a promising alternative due to their preeminent structural tunability,accessible well-defined pores,and excellent thermal/chemical stability under hydrous/anhydrous conditions.By the availability of organic units and the diversity of topologies and connections,advances in COFs have been increasing rapidly over the last decade and they have emerged as a new field of proton-conducting materials.Therefore,a comprehensive summary and discussion are urgently needed to provide an"at a glance"understanding of the prospects and challenges in the development of proton-conducting COFs.In this review,we target a comprehensive review of COFs in the field of proton conductivity from the aspects of design strategies,the proton conducting mechanism/features,the relationships of structure-function,and the application of research.The relevant content of theoretical simulation,advanced structural characterizations,prospects,and challenges are also presented elaborately and critically.More importantly,we sincerely hope that this progress report will form a consistent view of this field and provide inspiration for future research. 展开更多
关键词 Covalent-organic frameworks Proton conduction mechanism Proton exchange membrane Fuel cells
下载PDF
Metal-organic frameworks and their composites for advanced lithium-ion batteries:Synthesis,progress and prospects
2
作者 Chengcai Liu Borong Wu +7 位作者 Tao Liu Yuanxing Zhang Jingwen Cui Lingjun Huang Guoqiang Tan Ling Zhang Yuefeng Su Feng Wu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期449-470,I0011,共23页
Metal-organic frameworks(MOFs)are among the most promising materials for lithium-ion batteries(LIBs)owing to their high surface area,periodic porosity,adjustable pore size,and controllable chemical composition.For ins... Metal-organic frameworks(MOFs)are among the most promising materials for lithium-ion batteries(LIBs)owing to their high surface area,periodic porosity,adjustable pore size,and controllable chemical composition.For instance,their unique porous structures promote electrolyte penetration,ions transport,and make them ideal for battery separators.Regulating the chemical composition of MOF can introduce more active sites for electrochemical reactions.Therefore,MOFs and their related composites have been extensively and thoroughly explored for LIBs.However,the reported reviews solely include the applications of MOFs in the electrode materials of LIBs and rarely involve other aspects.A systematic review of the application of MOFs in LIBs is essential for understanding the mechanism of MOFs and better designing related MOFs battery materials.This review systematically evaluates the latest developments in pristine MOFs and MOF composites for LIB applications,including MOFs as the main materials(anode,cathode,separators,and electrolytes)to auxiliary materials(coating layers and additives for electrodes).Furthermore,the synthesis,modification methods,challenges,and prospects for the application of MOFs in LIBs are discussed. 展开更多
关键词 Metal-organic frameworks ELECTRODES Electrolytes SEPARATORS Lithium-ion batteries
下载PDF
Advances of Electrochemical and Electrochemiluminescent Sensors Based on Covalent Organic Frameworks
3
作者 Yue Cao Ru Wu +2 位作者 Yan‑Yan Gao Yang Zhou Jun‑Jie Zhu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第2期395-422,共28页
Covalent organic frameworks(COFs),a rapidly developing category of crystalline conjugated organic polymers,possess highly ordered structures,large specific surface areas,stable chemical properties,and tunable pore mic... Covalent organic frameworks(COFs),a rapidly developing category of crystalline conjugated organic polymers,possess highly ordered structures,large specific surface areas,stable chemical properties,and tunable pore microenvironments.Since the first report of boroxine/boronate ester-linked COFs in 2005,COFs have rapidly gained popularity,showing important application prospects in various fields,such as sensing,catalysis,separation,and energy storage.Among them,COFs-based electrochemical(EC)sensors with upgraded analytical performance are arousing extensive interest.In this review,therefore,we summarize the basic properties and the general synthesis methods of COFs used in the field of electroanalytical chemistry,with special emphasis on their usages in the fabrication of chemical sensors,ions sensors,immunosensors,and aptasensors.Notably,the emerged COFs in the electrochemiluminescence(ECL)realm are thoroughly covered along with their preliminary applications.Additionally,final conclusions on state-of-the-art COFs are provided in terms of EC and ECL sensors,as well as challenges and prospects for extending and improving the research and applications of COFs in electroanalytical chemistry. 展开更多
关键词 Covalent organic frameworks ELECTROCHEMISTRY ELECTROCHEMILUMINESCENCE SENSORS
下载PDF
Synergistic catalysis of the N-hydroxyphthalimide on flower-like bimetallic metal-organic frameworks for boosting oxidative desulfurization
4
作者 Jing He Kun Zhu +5 位作者 Wei Jiang Dong-Ao Zhu Lin-Hua Zhu Hai-Yan Huang Wen-Shuai Zhu Hua-Ming Li 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期674-682,共9页
Synergic catalytic effect between active sites and supports greatly determines the catalytic activity for the aerobic oxidative desulfurization of fuel oils.In this work,Ni-doped Co-based bimetallic metal-organic fram... Synergic catalytic effect between active sites and supports greatly determines the catalytic activity for the aerobic oxidative desulfurization of fuel oils.In this work,Ni-doped Co-based bimetallic metal-organic framework(CoNi-MOF)is fabricated to disperse N-hydroxyphthalimide(NHPI),in which the whole catalyst provides plentiful synergic catalytic effect to improve the performance of oxidative desulfurization(ODS).As a bimetallic MOF,the second metal Ni doping results in the flower-like morphology and the modification of electronic properties,which ensure the exposure of NHPI and strengthen the synergistic effect of the overall catalyst.Compared with the monometallic Co-MOF and naked NHPI,the NHPI@CoNi-MOF triggers the efficient activation of molecular oxygen and improves the ODS performance without an initiator.The sulfur removal of dibenzothiophene-based model oil reaches 96.4%over the NHPI@CoNi-MOF catalyst in 8 h of reaction.Furthermore,the catalytic product of this aerobic ODS reaction is sulfone,which is adsorbed on the catalyst surface due to the difference in polarity.This work provides new insight and strategy for the design of a strong synergic catalytic effect between NHPI and bimetallic supports toward high-activity aerobic ODS materials. 展开更多
关键词 Metal-organic frameworks DOPED BIMETALLIC N-HYDROXYPHTHALIMIDE Aerobic processes Oxidative desulfurization
下载PDF
Photophysics of metal-organic frameworks:A brief overview
5
作者 刘晴硕 余俊宏 胡建波 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第1期122-133,共12页
Metal-organic frameworks(MOFs),which are self-assembled porous coordination materials,have garnered considerable attention in the fields of optoelectronics,photovoltaic,photochemistry,and photocatalysis due to their d... Metal-organic frameworks(MOFs),which are self-assembled porous coordination materials,have garnered considerable attention in the fields of optoelectronics,photovoltaic,photochemistry,and photocatalysis due to their diverse structures and excellent tunability.However,the performance of MOF-based optoelectronic applications currently falls short of the industry benchmark.To enhance the performance of MOF materials,it is imperative to undertake comprehensive investigations aimed at gaining a deeper understanding of photophysics and sequentially optimizing properties related to photocarrier transport,recombination,interaction,and transfer.By utilizing femtosecond laser pulses to excite MOFs,time-resolved optical spectroscopy offers a means to observe and characterize these ultrafast microscopic processes.This approach adds the time coordinate as a novel dimension for comprehending the interaction between light and MOFs.Accordingly,this review provides a comprehensive overview of the recent advancements in the photophysics of MOFs and additionally outlines potential avenues for exploring the time domain in the investigation of MOFs. 展开更多
关键词 metal-organic framework(MOF) ultrafast spectroscopy PHOTOPHYSICS carrier dynamics
下载PDF
功能化COFs材料的制备及其对水中镉离子的吸附研究
6
作者 陆素芬 陆俊宇 +3 位作者 谢丽莎 池悦华 潘贵金 姚东梅 《化工新型材料》 CAS CSCD 北大核心 2024年第3期209-213,共5页
通过探索以三醛基间苯三酚(TP)为前体,2,5-二氨基-1,4苯二硫酚二盐酸盐修饰合成共价有机框架(COFs),并应用于水体中镉的吸附研究。采用扫描电镜(SEM)、傅里叶红外光谱(FT-IR)、热重分析(TG)等手段对材料形貌进行表征。利用火焰原子吸收... 通过探索以三醛基间苯三酚(TP)为前体,2,5-二氨基-1,4苯二硫酚二盐酸盐修饰合成共价有机框架(COFs),并应用于水体中镉的吸附研究。采用扫描电镜(SEM)、傅里叶红外光谱(FT-IR)、热重分析(TG)等手段对材料形貌进行表征。利用火焰原子吸收光谱仪(AAS)对吸附后溶液进行测定。结果表明:COFs材料对镉离子有良好的吸附效果,在低浓度下对镉吸附率为92.0%,镉浓度为150mg/L时达到最大吸附量。伪二级动力学曲线可更好地拟合吸附行为,吸附等温线同时符合Langmuir和Freundlich模型,最大理论吸附量为36.7mg/kg。制备的COFs材料对溶液中镉离子具有良好吸附性能。 展开更多
关键词 吸附 共价有机框架 常温法
下载PDF
Geospatial Technology Integration in Smart City Frameworks for Achieving Climate Neutrality by 2050: A Case Study of Limassol Municipality, Cyprus
7
作者 Antonis Papantoniou Chris Danezis Diofantos Hadjimitsis 《Journal of Geographic Information System》 2024年第1期44-60,共17页
This study investigated the integration of geospatial technologies within smart city frameworks to achieve the European Union’s climate neutrality goals by 2050. Focusing on rapid urbanization and escalating climate ... This study investigated the integration of geospatial technologies within smart city frameworks to achieve the European Union’s climate neutrality goals by 2050. Focusing on rapid urbanization and escalating climate challenges, the research analyzed how smart city frameworks, aligned with climate neutrality objectives, leverage geospatial technologies for urban planning and climate action. The study included case studies from three leading European cities, extracting lessons and best practices in implementing Climate City Contracts across sectors like energy, transport, and waste management. These insights highlighted the essential role of EU and national authorities in providing technical, regulatory, and financial support. Additionally, the paper presented the application of a WEBGIS platform in Limassol Municipality, Cyprus, demonstrating citizen engagement and acceptance of the proposed geospatial framework. Concluding with recommendations for future research, the study contributed significant insights into the advancement of urban sustainability and the effectiveness of geospatial technologies in smart city initiatives for combating climate change. 展开更多
关键词 Smart Cities Geospatial Technologies Smart City frameworks Geospatial Integration
下载PDF
A Tutorial on Federated Learning from Theory to Practice:Foundations,Software Frameworks,Exemplary Use Cases,and Selected Trends
8
作者 M.Victoria Luzón Nuria Rodríguez-Barroso +5 位作者 Alberto Argente-Garrido Daniel Jiménez-López Jose M.Moyano Javier Del Ser Weiping Ding Francisco Herrera 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第4期824-850,共27页
When data privacy is imposed as a necessity,Federated learning(FL)emerges as a relevant artificial intelligence field for developing machine learning(ML)models in a distributed and decentralized environment.FL allows ... When data privacy is imposed as a necessity,Federated learning(FL)emerges as a relevant artificial intelligence field for developing machine learning(ML)models in a distributed and decentralized environment.FL allows ML models to be trained on local devices without any need for centralized data transfer,thereby reducing both the exposure of sensitive data and the possibility of data interception by malicious third parties.This paradigm has gained momentum in the last few years,spurred by the plethora of real-world applications that have leveraged its ability to improve the efficiency of distributed learning and to accommodate numerous participants with their data sources.By virtue of FL,models can be learned from all such distributed data sources while preserving data privacy.The aim of this paper is to provide a practical tutorial on FL,including a short methodology and a systematic analysis of existing software frameworks.Furthermore,our tutorial provides exemplary cases of study from three complementary perspectives:i)Foundations of FL,describing the main components of FL,from key elements to FL categories;ii)Implementation guidelines and exemplary cases of study,by systematically examining the functionalities provided by existing software frameworks for FL deployment,devising a methodology to design a FL scenario,and providing exemplary cases of study with source code for different ML approaches;and iii)Trends,shortly reviewing a non-exhaustive list of research directions that are under active investigation in the current FL landscape.The ultimate purpose of this work is to establish itself as a referential work for researchers,developers,and data scientists willing to explore the capabilities of FL in practical applications. 展开更多
关键词 Data privacy distributed machine learning federated learning software frameworks
下载PDF
Atomically dispersed Mn-Nx catalysts derived from Mn-hexamine coordination frameworks for oxygen reduction reaction
9
作者 Guoyu Zhong Liuyong Zou +10 位作者 Xiao Chi Zhen Meng Zehong Chen Tingzhen Li Yongfa Huang Xiaobo Fu Wenbo Liao Shaona Zheng Yongjun Xu Feng Peng Xinwen Peng 《Carbon Energy》 SCIE EI CAS CSCD 2024年第5期114-126,共13页
Metal-organic frameworks recently have been burgeoning and used as precursors to obtain various metal-nitrogen-carbon catalysts for oxygen reduction reaction(ORR).Although rarely studied,Mn-N-C is a promising catalyst... Metal-organic frameworks recently have been burgeoning and used as precursors to obtain various metal-nitrogen-carbon catalysts for oxygen reduction reaction(ORR).Although rarely studied,Mn-N-C is a promising catalyst for ORR due to its weak Fenton reaction activity and strong graphitization catalysis.Here,we developed a facile strategy for anchoring the atomically dispersed nitrogen-coordinated single Mn sites on carbon nanosheets(MnNCS)from an Mn-hexamine coordination framework.The atomically dispersed Mn-N4 sites were dispersed on ultrathin carbon nanosheets with a hierarchically porous structure.The optimized MnNCS displayed an excellent ORR performance in half-cells(0.89 V vs.reversible hydrogen electrode(RHE)in base and 0.76 V vs.RHE in acid in half-wave potential)and Zn-air batteries(233 mW cm^(−2)in peak power density),along with significantly enhanced stability.Density functional theory calculations further corroborated that the Mn-N4-C1_(2)site has favorable adsorption of*OH as the rate-determining step.These findings demonstrate that the metal-hexamine coordination framework can be used as a model system for the rational design of highly active atomic metal catalysts for energy applications. 展开更多
关键词 carbon nanosheets ELECTROCATALYST metal-organic frameworks Mn-N4 oxygen reduction reaction Zn-air batteries
下载PDF
Rational design of new in situ reduction of Ni(II)catalytic system for low-cost and large-scale preparation of porous aromatic frameworks
10
作者 Shanshan Wang Yue Wu +3 位作者 Wenxiang Zhang Hao Ren Guangshan Zhu Heping Ma 《Carbon Energy》 SCIE EI CAS CSCD 2024年第5期105-113,共9页
Porous aromatic framework 1(PAF-1)is an extremely representative nanoporous organic framework owing to its high stability and exceptionally high surface area.Currently,the synthesis of PAF-1 is catalyzed by the Ni(COD... Porous aromatic framework 1(PAF-1)is an extremely representative nanoporous organic framework owing to its high stability and exceptionally high surface area.Currently,the synthesis of PAF-1 is catalyzed by the Ni(COD)2/COD/bpy system,suffering from great instability and high cost.Herein,we developed an in situ reduction of the Ni(II)catalytic system to synthesize PAF-1 in low cost and high yield.The active Ni(0)species produced from the NiCl_(2)/bpy/NaI/Mg catalyst system can effectively catalyze homocoupling of tetrakis(4-bromophenyl)methane at the room temperature to form PAF-1 with high Brunauer-Emmett-Teller(BET)-specific surface area up to 4948 m^(2) g^(−1)(Langmuir surface area,6785 m2 g−1).The possible halogen exchange and dehalogenation coupling mechanisms for this new catalytic process in PAF's synthesis are discussed in detail.The efficiency and universality of this innovative catalyst system have also been demonstrated in other PAFs'synthesis.This work provides a cheap,facile,and efficient method for scalable synthesis of PAFs and explores their application for high-pressure storage of Xe and Kr. 展开更多
关键词 adsorption carbon material nickel catalysis porous aromatic framework porous organic polymer
下载PDF
高价态硼磷COFs材料理论设计与储氢性能研究
11
作者 王耀东 李晓东 +3 位作者 杨朋辉 张慧东 刘秀英 于景新 《人工晶体学报》 CAS 北大核心 2024年第4期730-738,共9页
采用分子力学方法,从理论上设计了五种具有lta拓扑结构的高价态硼磷共价有机骨架(BP-COFs)材料。研究结果表明五种材料均具备有利于储氢应用的结构特性,如低密度(0.52~1.17 g·cm^(-3))、大比表面积(1274.12~4033.95 m^(2)·g^(... 采用分子力学方法,从理论上设计了五种具有lta拓扑结构的高价态硼磷共价有机骨架(BP-COFs)材料。研究结果表明五种材料均具备有利于储氢应用的结构特性,如低密度(0.52~1.17 g·cm^(-3))、大比表面积(1274.12~4033.95 m^(2)·g^(-1))和高孔隙率(0.55%~0.78%)等。使用巨正则蒙特卡罗(GCMC)方法预测298和77 K温度下五种材料对氢气分子的物理吸附性能,并分析了材料结构与氢吸附性能之间的构效关系,结果表明五种BP-COFs材料具有较强的氢气吸附能力。尤其是在77 K时,BP-COF-10和BP-COF-11在储氢性能方面的表现最为优异,BP-COF-10具有最高的体积储氢量52.86 g·L^(-1),BP-COF-11具有最高的质量储氢量9.90%,而且随着压强的增加,BP-COF-11的质量储氢量仍然保持较好的上升趋势,这表明本文所设计材料具有优异的储氢应用潜力。本研究将为实验上开发新型高性能储氢材料提供一定的理论参考。 展开更多
关键词 共价有机骨架 氢气储存 巨正则蒙特卡罗模拟 物理吸附 分子力学方法
下载PDF
综合创新实验:功能化COFs在锂硫电池中的应用
12
作者 杨延琴 古国贤 韩禄 《广州化工》 CAS 2024年第1期227-231,共5页
将碳纳米管作为载体,通过1,3,5-均苯三甲醛与3,8-二氨基-6-苯基菲啶在乙酸存在下的可逆席夫碱反应,合成了一种碳纳米管支撑的共价有机骨架复合材料(COF@CNT)。并用1,3-丙磺酸内酯将其功能化,进一步得到两性离子功能化的共价有机骨架复... 将碳纳米管作为载体,通过1,3,5-均苯三甲醛与3,8-二氨基-6-苯基菲啶在乙酸存在下的可逆席夫碱反应,合成了一种碳纳米管支撑的共价有机骨架复合材料(COF@CNT)。并用1,3-丙磺酸内酯将其功能化,进一步得到两性离子功能化的共价有机骨架复合材料(ZW-COF@CNT)。将该复合材料作为正极的硫宿主材料组装到锂硫电池中,研究其对电化学性能的影响。本实验涉及抽滤、真空干燥、纽扣电池组装等操作过程,也包括材料表征、电池性能测试等分析过程。 展开更多
关键词 综合创新实验 共价有机骨架 锂硫电池 穿梭效应
下载PDF
COFs材料磁固相萃取-HPLC-MS/MS法测定烘焙食品中两种主要晚期糖基化终末产物
13
作者 余晶晶 史莉莉 +3 位作者 刘雨欣 陈满堂 刘瑞红 刘伟 《轻工学报》 CAS 北大核心 2023年第6期52-61,共10页
为实现烘焙食品中晚期糖基化终末产物(Advanced Glycation End Products,AGEs)的准确、高灵敏测定,建立基于磁性共价有机骨架(Covalent Organic Frameworks,COFs)材料的磁固相萃取(Magnetic Solid Phase Extraction,MSPE)技术,实现烘焙... 为实现烘焙食品中晚期糖基化终末产物(Advanced Glycation End Products,AGEs)的准确、高灵敏测定,建立基于磁性共价有机骨架(Covalent Organic Frameworks,COFs)材料的磁固相萃取(Magnetic Solid Phase Extraction,MSPE)技术,实现烘焙食品中两种主要AGEs,即羧甲基赖氨酸(N^(ε)-(carboxymethyl)lysine),(CML)和羧乙基赖氨酸(N^(ε)-(carboxyethyl)lysine,CEL)的选择性、高效富集,并结合高效液相色谱-串联质谱法对其进行定量分析。结果表明:所合成的磁性COFs材料具有较大的比表面积和较高的磁化强度,适合应用于MSPE技术。MSPE的适宜条件为吸附剂用量20 mg,涡旋萃取时间20 min,洗脱溶剂选用5%氨水/甲醇溶液,洗脱溶剂体积4 mL,洗脱时间15 min。CML和CEL的检出限分别为2.05 ng/mL和2.31 ng/mL,定量限分别为6.83 ng/mL和7.71 ng/mL;日内及日间精密度良好(RSD_(日内)≤4.74%,RSD_(日间)≤5.38%);在饼干、坚果2种典型样品基质中,CML和CEL的加标回收率分别为90.70%~108.74%、85.50%~113.00%。将本文所建立的分析方法应用于市售的26种烘焙食品中CML和CEL的含量测定发现,饼干、糕点类烘焙食品中二者含量分别为(9.60±0.16)~(78.10±1.12)mg/kg、(4.37±0.23)~(26.70±1.27)mg/kg;坚果类烘焙食品中二者含量分别为(6.49±0.13)~(82.00±0.98)mg/kg、(6.65±0.30)~(55.90±0.67)mg/kg,该方法能有效净化样品,显著降低基质效应,定量分析准确性较高,且所合成的磁性COFs材料可再生使用5次,适合烘焙食品中CML和CEL的检测。 展开更多
关键词 晚期糖基化终末产物 共价有机骨架 磁固相萃取 高效液相色谱-串联质谱 烘焙食品
下载PDF
Structural survey of metal-covalent organic frameworks and covalent metal-organic frameworks 被引量:1
14
作者 Chaozhi Xiong Zhenwu Shao +3 位作者 Jia’nan Hong Kexin Bi Qingsong Huang Chong Liu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第12期2297-2309,共13页
This review offers an overview of the latest developments in metal-covalent organic framework(MCOF)and covalent metal-organic framework(CMOF)materials,whose construction entails a combination of reversible coordinatio... This review offers an overview of the latest developments in metal-covalent organic framework(MCOF)and covalent metal-organic framework(CMOF)materials,whose construction entails a combination of reversible coordination and covalent bonding adapted from metal-organic frameworks(MOFs)and covalent organic frameworks(COFs),respectively.With an emphasis on the MCOF and CMOF structures,this review surveys their building blocks and topologies.Specifically,the frameworks are classified based on the dimensions of their components(building blocks),namely,discrete building blocks and one-dimensional infinite building blocks.For the first category,the materials are further divided into collections of two-and three-dimensional networks based on their topologies.For the second category,the recently emerging MCOFs with woven structures are covered.Finally,the state-of-the-art in MCOF and CMOF chemistry has been laid out for promising avenues in future developments. 展开更多
关键词 metal–covalent organic frameworks covalent metal-organic frameworks TOPOLOGY building block
下载PDF
Applications of Metal–Organic Frameworks and Their Derivatives in Electrochemical CO_(2)Reduction 被引量:2
15
作者 Chengbo Li Yuan Ji +8 位作者 Youpeng Wang Chunxiao Liu Zhaoyang Chen Jialin Tang Yawei Hong Xu Li Tingting Zheng Qiu Jiang Chuan Xia 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第8期72-115,共44页
Electrochemically reducing CO_(2)to more reduced chemical species is a promising way that not only enables the conversion of intermittent energy resources to stable fuels,but also helps to build a closed-loop anthropo... Electrochemically reducing CO_(2)to more reduced chemical species is a promising way that not only enables the conversion of intermittent energy resources to stable fuels,but also helps to build a closed-loop anthropogenic carbon cycle.Among various electrocatalysts for electrochemical CO_(2)reduction,multifunctional metal–organic frameworks(MOFs)have been employed as highly efficient and selective heterogeneous electrocatalysts due to their ultrahigh porosity and topologically diverse structures.Up to now,great progress has been achieved in the design and synthesis of highly active and selective MOF-related catalysts for electrochemical CO_(2)reduction reaction(CO_(2)RR),and their corresponding reaction mechanisms have been thoroughly studied.In this review,we summarize the recent progress of applying MOFs and their derivatives in CO_(2)RR,with a focus on the design strategies for electrocatalysts and electrolyzers.We first discussed the reaction mechanisms for different CO_(2)RR products and introduced the commonly applied electrolyzer configurations in the current CO_(2)RR system.Then,an overview of several categories of products(CO,HCOOH,CH_(4),CH_(3)OH,and multi-carbon chemicals)generated from MOFs or their derivatives via CO_(2)RR was discussed.Finally,we offer some insights and perspectives for the future development of MOFs and their derivatives in electrochemical CO_(2)reduction.We aim to provide new insights into this field and further guide future research for large-scale applications. 展开更多
关键词 Metal-organic frameworks DERIVATIVES CATALYST CO_(2)reduction reaction ELECTROCATALYSIS
下载PDF
Metal-Free 2D/2D van der Waals Heterojunction Based on Covalent Organic Frameworks for Highly Efficient Solar Energy Catalysis 被引量:4
16
作者 Ge Yan Xiaodong Sun +5 位作者 Yu Zhang Hui Li Hongwei Huang Baohua Jia Dawei Su Tianyi Ma 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第9期15-30,共16页
Covalent organic frameworks(COFs)have emerged as a kind of rising star materials in photocatalysis.However,their photocatalytic activities are restricted by the high photogenerated electron-hole pairs recombination ra... Covalent organic frameworks(COFs)have emerged as a kind of rising star materials in photocatalysis.However,their photocatalytic activities are restricted by the high photogenerated electron-hole pairs recombination rate.Herein,a novel metal-free 2D/2D van der Waals heterojunction,composed of a two-dimensional(2D)COF with ketoenamine linkage(TpPa-1-COF)and 2D defective hexagonal boron nitride(h-BN),is successfully constructed through in situ solvothermal method.Benefitting from the presence of VDW heterojunction,larger contact area and intimate electronic coupling can be formed between the interface of TpPa-1-COF and defective h-BN,which make contributions to promoting charge car-riers separation.The introduced defects can also endow the h-BN with porous structure,thus providing more reactive sites.Moreover,the TpPa-1-COF will undergo a structural transformation after being integrated with defective h-BN,which can enlarge the gap between the conduction band position of the h-BN and TpPa-1-COF,and suppress electron backflow,corroborated by experimental and density functional theory calculations results.Accordingly,the resulting porous h-BN/TpPa-1-COF metal-free VDW heterojunction displays out-standing solar energy catalytic activity for water splitting without co-catalysts,and the H_(2) evolution rate can reach up to 3.15 mmol g^(−1) h^(−1),which is about 67 times greater than that of pristine TpPa-1-COF,also surpassing that of state-of-the-art metal-free-based photocatalysts reported to date.In particular,it is the first work for constructing COFs-based heterojunctions with the help of h-BN,which may provide new avenue for designing highly efficient metal-free-based photocatalysts for H_(2) evolution. 展开更多
关键词 Covalent organic frameworks 2D/2D van der Waals heterojunction Metal-free photocatalyst
下载PDF
Understanding Dual-Polar Group Functionalized COFs for Accelerating Li-Ion Transport and Dendrite-Free Deposition in Lithium Metal Anodes 被引量:1
17
作者 Qi An Hong-en Wang +5 位作者 Genfu Zhao Shimin Wang Lufu Xu Han Wang Yao Fu Hong Guo 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第2期293-302,共10页
Lithium metal batteries(LMBs)have attracted wide attentions because of their high theoretical specific capacity and low electrochemical potential.However,the growth of lithium dendrites seriously affects the practical... Lithium metal batteries(LMBs)have attracted wide attentions because of their high theoretical specific capacity and low electrochemical potential.However,the growth of lithium dendrites seriously affects the practical application of LMBs.Thus,the lithium-philic carbonyl and carboxy dualgroup-modified covalent organic framework(COF-COOH)is designed to coat the polypropylene(PP)separator(COF-COOH@PP separator),realizing the regulation of ion transport and uniform lithium deposition.The plentiful and negative charge sites in the COF-COOH can suppress the diffusion of the freely movable lithium salt anion by the electrostatic interaction.Density functional theory(DFT)calculations demonstrate that the COF-COOH possesses the function of anchoring anion and desolvation.Consequently,the Li^(+)transference number(0.7),ion conductivity(0.64 mS cm^(-1)),and desolvating of Li^(+)are obviously improved by using the COF-COOH@PP separator.The modified Li-Li symmetric battery delivers stable cycle for more than 1000 h and lower voltage hysteresis(0.02 V).This dendrite-free deposition strategy holds great promise for practical application of Li metal anodes. 展开更多
关键词 covalent organic frameworks dendrite-free functionalized separator lithiophilicity groups
下载PDF
Charge-transfer-regulated bimetal ferrocene-based organic frameworks for promoting electrocatalytic oxygen evolution 被引量:2
18
作者 Jinsong Hu Qiaoling Xu +5 位作者 Xiaoyu Wang Xinhua Huang Chunhui Zhou Ying Ye Lei Zhang Huan Pang 《Carbon Energy》 SCIE CSCD 2023年第6期60-71,共12页
The ferrocene(Fc)-based metal-organic frameworks(MOFs)are regarded as compelling platforms for the construction of efficient and robust oxygen evolution reaction(OER)electrocatalysts due to their superior conductivity... The ferrocene(Fc)-based metal-organic frameworks(MOFs)are regarded as compelling platforms for the construction of efficient and robust oxygen evolution reaction(OER)electrocatalysts due to their superior conductivity and flexible electronic structure.Herein,density functional theory simulations were addressed to predict the electronic structure regulations of CoFc-MOF by nickel doping,which demonstrated that the well-proposed CoNiFc-MOFs delivered a small energy barrier,promoted conductivity,and well-regulated d-band center.Inspired by these,a series of sea-urchin-like CoNiFc-MOFs were successfully synthesized via a facile solvothermal method.Moreover,the synchrotron X-ray and X-ray photoelectron spectroscopy measurements manifested that the introduction of nickel could tailor the electronic structure of the catalyst and induce the directional transfer of electrons,thus optimizing the rate-determining step of^(*)O→^(*)OOH during the OER process and yielding decent overpotentials of 209 and 252 mV at 10 and 200 mA cm^(−2),respectively,with a small Tafel slope of 39 mV dec^(−1).This work presents a new paradigm for developing highly efficient and durable MOF-based electrocatalysts for OER. 展开更多
关键词 density functional theory simulations electronic structure regulation hierarchical structure metal-organic frameworks oxygen evolution reaction
下载PDF
离子型磁性COFs负载GOx实现纳米酶与天然酶的级联反应 被引量:1
19
作者 张衡 杨帆 +1 位作者 任瑞鹏 吕永康 《太原理工大学学报》 CAS 北大核心 2023年第4期619-629,共11页
【目的】一锅反应中将天然酶的高选择性与纳米酶的高稳定性相结合,已成为一种提高生物催化级联多样性/复杂性和多酶系统稳定性的理想解决方案。【方法】设计合成了一种离子型磁性Fe_(3)O_(4)@EB-COFs材料,在静电作用诱导下制备了葡萄糖... 【目的】一锅反应中将天然酶的高选择性与纳米酶的高稳定性相结合,已成为一种提高生物催化级联多样性/复杂性和多酶系统稳定性的理想解决方案。【方法】设计合成了一种离子型磁性Fe_(3)O_(4)@EB-COFs材料,在静电作用诱导下制备了葡萄糖氧化酶(GOx)-磁性共价有机框架材料(GOx/Fe_(3)O_(4)@EB-COFs)。【结果】Fe_(3)O_(4)@EB-COFs扮演了纳米酶与载体材料的角色,且所得复合材料可用于葡萄糖浓度的比色测定。酸性条件下,GOx/Fe_(3)O_(4)@EB-COFs展现出极好的催化葡萄糖氧化与2,2′-联氮-双-3-乙基苯并噻唑啉-6-磺酸(ABTS)氧化的级联反应。动力学研究表明,反应遵循Lineweaver-Burk方程,说明构建纳米酶与天然酶的级联反应时仍呈现了生物催化的特点。在磁性Fe_(3)O_(4)的加持下,GOx/Fe_(3)O_(4)@EB-COFs表现出良好的可回收性。【结论】构建纳米酶与天然酶的多酶催化系统对于实现仿生催化具有重要意义。 展开更多
关键词 共价有机框架 Fe_(3)O_(4) 葡萄糖氧化酶 静电作用 级联反应
下载PDF
KOH-assisted aqueous synthesis of bimetallic metal-organic frameworks and their derived selenide composites for efficient lithium storage 被引量:2
20
作者 Shuya Zhang Yanchun Xue +7 位作者 Yutang Zhang Chengxing Zhu Xingmei Guo Fu Cao Xiangjun Zheng Qinghong Kong Junhao Zhang Tongxiang Fan 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第4期601-610,共10页
To solve low efficiency,environmental pollution,and toxicity for synthesizing zeolitic imidazolate frameworks(ZIFs)in organic solvents,a KOH-assisted aqueous strategy is proposed to synthesize bimetallic ZIFs polyhedr... To solve low efficiency,environmental pollution,and toxicity for synthesizing zeolitic imidazolate frameworks(ZIFs)in organic solvents,a KOH-assisted aqueous strategy is proposed to synthesize bimetallic ZIFs polyhedrons,which are used as precursors to prepare bimetallic selenide and N-doped carbon(NC)composites.Among them,Fe–Co–Se/NC retains the three-dimensional(3D)polyhedrons with mesoporous structure,and Fe–Co–Se nanoparticles are uniform in size and evenly distributed.When assessed as anode material for lithium-ion batteries,Fe–Co–Se/NC achieves an excellent initial specific capacity of 1165.9 m Ah·g^(-1)at 1.0 A·g^(-1),and the reversible capacity of Fe–Co–Se/NC anode is 1247.4 m Ah·g^(-1)after 550 cycles.It is attributed to that the uniform composite of bimetallic selenides and N-doped carbon can effectively tune redox active sites,the stable 3D structure of Fe–Co–Se/NCs guarantees the structural stability and wettability of the electrolyte,and the uniform distribution of Fe–Co–S nanoparticles in size esuppresses the volume expansion and accelerates the electrochemical reaction kinetics. 展开更多
关键词 potassium hydroxide assisted aqueous strategy bimetallic zeolitic imidazolate frameworks bimetallic selenide lithium-ion batteries long cycle performance
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部