期刊文献+
共找到29篇文章
< 1 2 >
每页显示 20 50 100
Analysis of Global System for Mobile Communication (GSM) Subscription Fraud Detection System
1
作者 E. N. Ekwonwune U. C. Chukwuebuka +1 位作者 A. E. Duroha A. N. Duru 《International Journal of Communications, Network and System Sciences》 2022年第10期167-180,共14页
This work is concerned with GSM subscription fraud detection system using some network techniques. Fraud is a hitch around the globe with huge loss of income. Fraud has an effect on the credibility and performance of ... This work is concerned with GSM subscription fraud detection system using some network techniques. Fraud is a hitch around the globe with huge loss of income. Fraud has an effect on the credibility and performance of telecommunication companies. The most difficult problem that faces the industry is the fact that fraud is dynamic, which means that whenever fraudsters feel that they will be detected, they devise other ways to circumvent security measures. In such cases, the perpetrators’ intention is to completely avoid or at least reduce the charges for using the services. Subscription fraud is one of the major types of telecommunication fraud in which a customer obtains an account without intention to pay the bill. Thus at the level of a phone number, all transactions from the number will be fraudulent. In such cases abnormal usage occurs throughout the active period of the account;which is usually used for call selling or intensive self usage. This provides a means for illegal high profit business for fraudsters requiring minimal investment and relatively low risk of getting caught. A system to prevent subscription fraud in GSM telecommunications with high impact on long distance carriers is proposed to detect fraud. The system employs adaptive flexible techniques using advanced data analysis like Artificial Neural Networks (ANN). This study aims at developing a fraud detection model occurrence in GSM Network. The paper also gives analysis of the fraud detection Systems, fraud detection and prevention, fraud prevention methods etc. Fraud affects us all and is of particular concern to those who manage large government and business organisations where the potential losses are greatest. The operation of a mobile network is complex, and fraudsters invest a lot of energy to find and exploit every weakness of the system. A typical example would be subscription fraud, where a fraudster acquires a subscription to the mobile network under a false identity;and start reselling the use of his phone to unscrupulous customers (typically for international calls to distant foreign countries) at rate less than the regular tariff. 展开更多
关键词 GSM fraud MOBILE fraud detection Communication system Mobile Telecommunication
下载PDF
Credit Card Fraud Detection Using Improved Deep Learning Models
2
作者 Sumaya S.Sulaiman Ibraheem Nadher Sarab M.Hameed 《Computers, Materials & Continua》 SCIE EI 2024年第1期1049-1069,共21页
Fraud of credit cards is a major issue for financial organizations and individuals.As fraudulent actions become more complex,a demand for better fraud detection systems is rising.Deep learning approaches have shown pr... Fraud of credit cards is a major issue for financial organizations and individuals.As fraudulent actions become more complex,a demand for better fraud detection systems is rising.Deep learning approaches have shown promise in several fields,including detecting credit card fraud.However,the efficacy of these models is heavily dependent on the careful selection of appropriate hyperparameters.This paper introduces models that integrate deep learning models with hyperparameter tuning techniques to learn the patterns and relationships within credit card transaction data,thereby improving fraud detection.Three deep learning models:AutoEncoder(AE),Convolution Neural Network(CNN),and Long Short-Term Memory(LSTM)are proposed to investigate how hyperparameter adjustment impacts the efficacy of deep learning models used to identify credit card fraud.The experiments conducted on a European credit card fraud dataset using different hyperparameters and three deep learning models demonstrate that the proposed models achieve a tradeoff between detection rate and precision,leading these models to be effective in accurately predicting credit card fraud.The results demonstrate that LSTM significantly outperformed AE and CNN in terms of accuracy(99.2%),detection rate(93.3%),and area under the curve(96.3%).These proposed models have surpassed those of existing studies and are expected to make a significant contribution to the field of credit card fraud detection. 展开更多
关键词 Card fraud detection hyperparameter tuning deep learning autoencoder convolution neural network long short-term memory RESAMPLING
下载PDF
A Self-Adapting and Efficient Dandelion Algorithm and Its Application to Feature Selection for Credit Card Fraud Detection
3
作者 Honghao Zhu MengChu Zhou +1 位作者 Yu Xie Aiiad Albeshri 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第2期377-390,共14页
A dandelion algorithm(DA) is a recently developed intelligent optimization algorithm for function optimization problems. Many of its parameters need to be set by experience in DA,which might not be appropriate for all... A dandelion algorithm(DA) is a recently developed intelligent optimization algorithm for function optimization problems. Many of its parameters need to be set by experience in DA,which might not be appropriate for all optimization problems. A self-adapting and efficient dandelion algorithm is proposed in this work to lower the number of DA's parameters and simplify DA's structure. Only the normal sowing operator is retained;while the other operators are discarded. An adaptive seeding radius strategy is designed for the core dandelion. The results show that the proposed algorithm achieves better performance on the standard test functions with less time consumption than its competitive peers. In addition, the proposed algorithm is applied to feature selection for credit card fraud detection(CCFD), and the results indicate that it can obtain higher classification and detection performance than the-state-of-the-art methods. 展开更多
关键词 Credit card fraud detection(CCFD) dandelion algorithm(DA) feature selection normal sowing operator
下载PDF
The Effects of Competence and Auditor Training on Fraud Detection Within Multinational Companies in Sub-Saharan Africa
4
作者 Ivan Djossa Tchokoté Joëlle Tsobze Tiomeguim 《Journal of Modern Accounting and Auditing》 2024年第1期1-13,共13页
The aim of this study is to examine the qualities that auditors engaged in detecting potential fraud within multinational corporations in Sub-Saharan Africa should possess.To achieve this goal,a quantitative approach ... The aim of this study is to examine the qualities that auditors engaged in detecting potential fraud within multinational corporations in Sub-Saharan Africa should possess.To achieve this goal,a quantitative approach was used to develop and test a research model based on three theories:agency theory,attribution theory,and cognitive dissonance theory.Responses from a panel of two hundred and nine(209)auditors who conducted a legal audit mission in a Sub-Saharan multinational were analyzed using SmartPLS 3.3.3 software.The results emphasize the crucial importance of auditors’competence and continuous training in fraud detection.However,professional skepticism and time pressure were found to be non-significant in this context.This conclusion provides essential insights for auditors,highlighting the key qualities needed to effectively address fraud detection within multinational corporations in Sub-Saharan Africa. 展开更多
关键词 fraud legal audit fraud detection MULTINATIONALS Sub-Saharan Africa
下载PDF
Real-Time Fraud Detection Using Machine Learning
5
作者 Benjamin Borketey 《Journal of Data Analysis and Information Processing》 2024年第2期189-209,共21页
Credit card fraud remains a significant challenge, with financial losses and consumer protection at stake. This study addresses the need for practical, real-time fraud detection methodologies. Using a Kaggle credit ca... Credit card fraud remains a significant challenge, with financial losses and consumer protection at stake. This study addresses the need for practical, real-time fraud detection methodologies. Using a Kaggle credit card dataset, I tackle class imbalance using the Synthetic Minority Oversampling Technique (SMOTE) to enhance modeling efficiency. I compare several machine learning algorithms, including Logistic Regression, Linear Discriminant Analysis, K-nearest Neighbors, Classification and Regression Tree, Naive Bayes, Support Vector, Random Forest, XGBoost, and Light Gradient-Boosting Machine to classify transactions as fraud or genuine. Rigorous evaluation metrics, such as AUC, PRAUC, F1, KS, Recall, and Precision, identify the Random Forest as the best performer in detecting fraudulent activities. The Random Forest model successfully identifies approximately 92% of transactions scoring 90 and above as fraudulent, equating to a detection rate of over 70% for all fraudulent transactions in the test dataset. Moreover, the model captures more than half of the fraud in each bin of the test dataset. SHAP values provide model explainability, with the SHAP summary plot highlighting the global importance of individual features, such as “V12” and “V14”. SHAP force plots offer local interpretability, revealing the impact of specific features on individual predictions. This study demonstrates the potential of machine learning, particularly the Random Forest model, for real-time credit card fraud detection, offering a promising approach to mitigate financial losses and protect consumers. 展开更多
关键词 Credit Card fraud detection Machine Learning SHAP Values Random Forest
下载PDF
A Credit Card Fraud Detection Model Based on Multi-Feature Fusion and Generative Adversarial Network 被引量:1
6
作者 Yalong Xie Aiping Li +2 位作者 Biyin Hu Liqun Gao Hongkui Tu 《Computers, Materials & Continua》 SCIE EI 2023年第9期2707-2726,共20页
Credit Card Fraud Detection(CCFD)is an essential technology for banking institutions to control fraud risks and safeguard their reputation.Class imbalance and insufficient representation of feature data relating to cr... Credit Card Fraud Detection(CCFD)is an essential technology for banking institutions to control fraud risks and safeguard their reputation.Class imbalance and insufficient representation of feature data relating to credit card transactions are two prevalent issues in the current study field of CCFD,which significantly impact classification models’performance.To address these issues,this research proposes a novel CCFD model based on Multifeature Fusion and Generative Adversarial Networks(MFGAN).The MFGAN model consists of two modules:a multi-feature fusion module for integrating static and dynamic behavior data of cardholders into a unified highdimensional feature space,and a balance module based on the generative adversarial network to decrease the class imbalance ratio.The effectiveness of theMFGAN model is validated on two actual credit card datasets.The impacts of different class balance ratios on the performance of the four resamplingmodels are analyzed,and the contribution of the two different modules to the performance of the MFGAN model is investigated via ablation experiments.Experimental results demonstrate that the proposed model does better than state-of-the-art models in terms of recall,F1,and Area Under the Curve(AUC)metrics,which means that the MFGAN model can help banks find more fraudulent transactions and reduce fraud losses. 展开更多
关键词 Credit card fraud detection imbalanced classification feature fusion generative adversarial networks anti-fraud systems
下载PDF
The Detection of Fraudulent Smart Contracts Based on ECA-EfficientNet and Data Enhancement
7
作者 Xuanchen Zhou Wenzhong Yang +3 位作者 Liejun Wang Fuyuan Wei KeZiErBieKe HaiLaTi Yuanyuan Liao 《Computers, Materials & Continua》 SCIE EI 2023年第12期4073-4087,共15页
With the increasing popularity of Ethereum,smart contracts have become a prime target for fraudulent activities such as Ponzi,honeypot,gambling,and phishing schemes.While some researchers have studied intelligent frau... With the increasing popularity of Ethereum,smart contracts have become a prime target for fraudulent activities such as Ponzi,honeypot,gambling,and phishing schemes.While some researchers have studied intelligent fraud detection,most research has focused on identifying Ponzi contracts,with little attention given to detecting and preventing gambling or phishing contracts.There are three main issues with current research.Firstly,there exists a severe data imbalance between fraudulent and non-fraudulent contracts.Secondly,the existing detection methods rely on diverse raw features that may not generalize well in identifying various classes of fraudulent contracts.Lastly,most prior studies have used contract source code as raw features,but many smart contracts only exist in bytecode.To address these issues,we propose a fraud detection method that utilizes Efficient Channel Attention EfficientNet(ECA-EfficientNet)and data enhancement.Our method begins by converting bytecode into Red Green Blue(RGB)three-channel images and then applying channel exchange data enhancement.We then use the enhanced ECA-EfficientNet approach to classify fraudulent smart contract RGB images.Our proposed method achieves high F1-score and Recall on both publicly available Ponzi datasets and self-built multi-classification datasets that include Ponzi,honeypot,gambling,and phishing smart contracts.The results of the experiments demonstrate that our model outperforms current methods and their variants in Ponzi contract detection.Our research addresses a significant problem in smart contract security and offers an effective and efficient solution for detecting fraudulent contracts. 展开更多
关键词 fraud detection smart contract ECA-EfficientNet Ethereum
下载PDF
CDR2IMG:A Bridge from Text to Image in Telecommunication Fraud Detection
8
作者 Zhen Zhen Jian Gao 《Computer Systems Science & Engineering》 SCIE EI 2023年第10期955-973,共19页
Telecommunication fraud has run rampant recently worldwide.However,previous studies depend highly on expert knowledge-based feature engineering to extract behavior information,which cannot adapt to the fastchanging mo... Telecommunication fraud has run rampant recently worldwide.However,previous studies depend highly on expert knowledge-based feature engineering to extract behavior information,which cannot adapt to the fastchanging modes of fraudulent subscribers.Therefore,we propose a new taxonomy that needs no hand-designed features but directly takes raw Call DetailRecords(CDR)data as input for the classifier.Concretely,we proposed a fraud detectionmethod using a convolutional neural network(CNN)by taking CDR data as images and applying computer vision techniques like image augmentation.Comprehensive experiments on the real-world dataset from the 2020 Digital Sichuan Innovation Competition show that our proposed method outperforms the classic methods in many metrics with excellent stability in both the changes of quantity and the balance of samples.Compared with the state-of-the-art method,the proposed method has achieved about 89.98%F1-score and 92.93%AUC,improving 2.97%and 0.48%,respectively.With the augmentation technique,the model’s performance can be further enhanced by a 91.09%F1-score and a 94.49%AUC respectively.Beyond telecommunication fraud detection,our method can also be extended to other text datasets to automatically discover new features in the view of computer vision and its powerful methods. 展开更多
关键词 Telecommunication fraud detection call detail records convolutional neural network
下载PDF
E-Commerce Fraud Detection Based on Machine Learning Techniques:Systematic Literature Review
9
作者 Abed Mutemi Fernando Bacao 《Big Data Mining and Analytics》 EI CSCD 2024年第2期419-444,共26页
The e-commerce industry’s rapid growth,accelerated by the COVID-19 pandemic,has led to an alarming increase in digital fraud and associated losses.To establish a healthy e-commerce ecosystem,robust cyber security and... The e-commerce industry’s rapid growth,accelerated by the COVID-19 pandemic,has led to an alarming increase in digital fraud and associated losses.To establish a healthy e-commerce ecosystem,robust cyber security and anti-fraud measures are crucial.However,research on fraud detection systems has struggled to keep pace due to limited real-world datasets.Advances in artificial intelligence,Machine Learning(ML),and cloud computing have revitalized research and applications in this domain.While ML and data mining techniques are popular in fraud detection,specific reviews focusing on their application in e-commerce platforms like eBay and Facebook are lacking depth.Existing reviews provide broad overviews but fail to grasp the intricacies of ML algorithms in the e-commerce context.To bridge this gap,our study conducts a systematic literature review using the Preferred Reporting Items for Systematic reviews and Meta-Analysis(PRISMA)methodology.We aim to explore the effectiveness of these techniques in fraud detection within digital marketplaces and the broader e-commerce landscape.Understanding the current state of the literature and emerging trends is crucial given the rising fraud incidents and associated costs.Through our investigation,we identify research opportunities and provide insights to industry stakeholders on key ML and data mining techniques for combating e-commerce fraud.Our paper examines the research on these techniques as published in the past decade.Employing the PRISMA approach,we conducted a content analysis of 101 publications,identifying research gaps,recent techniques,and highlighting the increasing utilization of artificial neural networks in fraud detection within the industry. 展开更多
关键词 E-COMMERCE Machine Learning(ML) systematic review fraud detection organized retail fraud
原文传递
A Distributed Approach of Big Data Mining for Financial Fraud Detection in a Supply Chain 被引量:5
10
作者 Hangjun Zhou Guang Sun +4 位作者 Sha Fu Xiaoping Fan Wangdong Jiang Shuting Hu Lingjiao Li 《Computers, Materials & Continua》 SCIE EI 2020年第8期1091-1105,共15页
Supply Chain Finance(SCF)is important for improving the effectiveness of supply chain capital operations and reducing the overall management cost of a supply chain.In recent years,with the deep integration of supply c... Supply Chain Finance(SCF)is important for improving the effectiveness of supply chain capital operations and reducing the overall management cost of a supply chain.In recent years,with the deep integration of supply chain and Internet,Big Data,Artificial Intelligence,Internet of Things,Blockchain,etc.,the efficiency of supply chain financial services can be greatly promoted through building more customized risk pricing models and conducting more rigorous investment decision-making processes.However,with the rapid development of new technologies,the SCF data has been massively increased and new financial fraud behaviors or patterns are becoming more covertly scattered among normal ones.The lack of enough capability to handle the big data volumes and mitigate the financial frauds may lead to huge losses in supply chains.In this article,a distributed approach of big data mining is proposed for financial fraud detection in a supply chain,which implements the distributed deep learning model of Convolutional Neural Network(CNN)on big data infrastructure of Apache Spark and Hadoop to speed up the processing of the large dataset in parallel and reduce the processing time significantly.By training and testing on the continually updated SCF dataset,the approach can intelligently and automatically classify the massive data samples and discover the fraudulent financing behaviors,so as to enhance the financial fraud detection with high precision and recall rates,and reduce the losses of frauds in a supply chain. 展开更多
关键词 Big data mining deep learning fraud detection supply chain Internet of Things
下载PDF
Credit Card Fraud Detection Based on Machine Learning 被引量:2
11
作者 Yong Fang Yunyun Zhang Cheng Huang 《Computers, Materials & Continua》 SCIE EI 2019年第7期185-195,共11页
In recent years,the rapid development of e-commerce exposes great vulnerabilities in online transactions for fraudsters to exploit.Credit card transactions take a salient role in nowadays’online transactions for its ... In recent years,the rapid development of e-commerce exposes great vulnerabilities in online transactions for fraudsters to exploit.Credit card transactions take a salient role in nowadays’online transactions for its obvious advantages including discounts and earning credit card points.So credit card fraudulence has become a target of concern.In order to deal with the situation,credit card fraud detection based on machine learning is been studied recently.Yet,it is difficult to detect fraudulent transactions due to data imbalance(normal and fraudulent transactions),for which Smote algorithm is proposed in order to resolve data imbalance.The assessment of Light Gradient Boosting Machine model which proposed in the paper depends much on datasets collected from clients’daily transactions.Besides,to prove the new model’s superiority in detecting credit card fraudulence,Light Gradient Boosting Machine model is compared with Random Forest and Gradient Boosting Machine algorithm in the experiment.The results indicate that Light Gradient Boosting Machine model has a good performance.The experiment in credit card fraud detection based on Light Gradient Boosting Machine model achieved a total recall rate of 99%in real dataset and fast feedback,which proves the new model’s efficiency in detecting credit card fraudulence. 展开更多
关键词 Credit card fraud detection imbalanced data LightGBM model smote algorithm
下载PDF
Fraud detections for online businesses:a perspective from blockchain technology 被引量:2
12
作者 Yuanfeng Cai Dan Zhu 《Financial Innovation》 2016年第1期256-265,共10页
Background:The reputation system has been designed as an effective mechanism to reduce risks associated with online shopping for customers.However,it is vulnerable to rating fraud.Some raters may inject unfairly high ... Background:The reputation system has been designed as an effective mechanism to reduce risks associated with online shopping for customers.However,it is vulnerable to rating fraud.Some raters may inject unfairly high or low ratings to the system so as to promote their own products or demote their competitors.Method:This study explores the rating fraud by differentiating the subjective fraud from objective fraud.Then it discusses the effectiveness of blockchain technology in objective fraud and its limitation in subjective fraud,especially the rating fraud.Lastly,it systematically analyzes the robustness of blockchain-based reputation systems in each type of rating fraud.Results:The detection of fraudulent raters is not easy since they can behave strategically to camouflage themselves.We explore the potential strengths and limitations of blockchain-based reputation systems under two attack goals:ballot-stuffing and bad-mouthing,and various attack models including constant attack,camouflage attack,whitewashing attack and sybil attack.Blockchain-based reputation systems are more robust against bad-mouthing than ballot-stuffing fraud.Conclusions:Blockchain technology provides new opportunities for redesigning the reputation system.Blockchain systems are very effective in preventing objective information fraud,such as loan application fraud,where fraudulent information is fact-based.However,their effectiveness is limited in subjective information fraud,such as rating fraud,where the ground-truth is not easily validated.Blockchain systems are effective in preventing bad mouthing and whitewashing attack,but they are limited in detecting ballot-stuffing under sybil attack,constant attacks and camouflage attack. 展开更多
关键词 Blockchain fraud detection Rating fraud Reputation systems
下载PDF
Handling Class Imbalance in Online Transaction Fraud Detection
13
作者 Kanika Jimmy Singla +3 位作者 Ali Kashif Bashir Yunyoung Nam Najam UI Hasan Usman Tariq 《Computers, Materials & Continua》 SCIE EI 2022年第2期2861-2877,共17页
With the rise of internet facilities,a greater number of people have started doing online transactions at an exponential rate in recent years as the online transaction system has eliminated the need of going to the ba... With the rise of internet facilities,a greater number of people have started doing online transactions at an exponential rate in recent years as the online transaction system has eliminated the need of going to the bank physically for every transaction.However,the fraud cases have also increased causing the loss of money to the consumers.Hence,an effective fraud detection system is the need of the hour which can detect fraudulent transactions automatically in real-time.Generally,the genuine transactions are large in number than the fraudulent transactions which leads to the class imbalance problem.In this research work,an online transaction fraud detection system using deep learning has been proposed which can handle class imbalance problem by applying algorithm-level methods which modify the learning of the model to focus more on the minority class i.e.,fraud transactions.A novel loss function named Weighted Hard-Reduced Focal Loss(WH-RFL)has been proposed which has achieved maximum fraud detection rate i.e.,True PositiveRate(TPR)at the cost of misclassification of few genuine transactions as high TPR is preferred over a high True Negative Rate(TNR)in fraud detection system and same has been demonstrated using three publicly available imbalanced transactional datasets.Also,Thresholding has been applied to optimize the decision threshold using cross-validation to detect maximum number of frauds and it has been demonstrated by the experimental results that the selection of the right thresholding method with deep learning yields better results. 展开更多
关键词 Class imbalance deep learning fraud detection loss function THRESHOLDING
下载PDF
Fraud detection on payment transaction networks via graph computing and visualization
14
作者 Sun Quan Tang Tao +3 位作者 Zheng Jianbin Lin Jiale Zhao Jintao Liu Hongbao 《High Technology Letters》 EI CAS 2020年第3期253-261,共9页
With the fast development of Internet technology,more and more payments are fulfilled by mobile Apps in an electrical way which significantly saves time and efforts for payment.Such a change has benefited a large numb... With the fast development of Internet technology,more and more payments are fulfilled by mobile Apps in an electrical way which significantly saves time and efforts for payment.Such a change has benefited a large number of individual users as well as merchants,and a few major players for payment service have emerged in China.As a result,the payment service competition becomes even fierce,and various promotion activities have been launched for attracting more users by the payment service providers.In this paper,the problem focused on is fraud payment detection,which in fact has been a major concern for the providers who spend a significant amount of money to popularize their payment tools.This paper tries the graph computing-based visualization to the behavior of transactions occuring between the individual users and merchants.Specifically,a network analysisbased pipeline has been built.It consists of the following key components:transaction network building based on daily records aggregation;transaction network filtering based on edge and node removal;transaction network decomposition by community detection;detected transaction community visualization.The proposed approach is verified on the real-world dataset collected from the major player in the payment market in Asia and the qualitative results show the efficiency of the method. 展开更多
关键词 payment fraud detection graph computing graph embedding machine learning
下载PDF
Effect of personality on fraud detection: The Malaysian case
15
作者 Nahariah Jaffar Hasnah Haron +1 位作者 Takiah Mohd Iskandar Arfah Salleh 《Journal of Modern Accounting and Auditing》 2010年第8期47-54,共8页
Auditing standards require external auditors to provide reasonable assurance that the financial statements are free from material misstatements, either due to fraud or error. Inability of the external auditors to dete... Auditing standards require external auditors to provide reasonable assurance that the financial statements are free from material misstatements, either due to fraud or error. Inability of the external auditors to detect the material misstatements, particularly fraud, may expose them to litigation. The present study aims to examine the effect of personality factors (i.e., neuroticism, extraversion, conscientiousness, openness to experience and agreeableness) on the external auditors' ability to detect the likelihood of fraud. An experimental approach is adopted by sending case materials to audit partners and audit managers attached to auditing firms operating in Malaysia. The result shows that personality does not have a positive effect on the external auditors' ability to detect the likelihood of fraud. 展开更多
关键词 fraud personality factor Big-5 model detection of fraud external auditors' ability
下载PDF
Machine Learning-Based Approach for Identification of SIM Box Bypass Fraud in a Telecom Network Based on CDR Analysis: Case of a Fixed and Mobile Operator in Cameroon
16
作者 Eric Michel Deussom Djomadji Kabiena Ivan Basile +2 位作者 Tchapga Tchito Christian Ferry Vaneck Kouam Djoko Michael Ekonde Sone 《Journal of Computer and Communications》 2023年第2期142-157,共16页
In the telecommunications sector, companies suffer serious damages due to fraud, especially in Africa. One of the main types of fraud is SIM box bypass fraud, which includes using SIM cards to divert incoming internat... In the telecommunications sector, companies suffer serious damages due to fraud, especially in Africa. One of the main types of fraud is SIM box bypass fraud, which includes using SIM cards to divert incoming international calls from mobile operators creating massive losses of revenue. In order to provide a solution to these shortcomings that apply almost to all network operators, we developed intelligent algorithms that exploit huge amounts of data from mobile operators and that detect fraud by analyzing CDRs from voice calls. In this paper we used three classification techniques: Random Forest, Support Vector Machine (SVM) and XGBoost to detect this type of fraud;we compared the performance of these different algorithms to evaluate the model by using data collected from an operator’s network in Cameroon. The algorithm that produced a better performance was the Random Forest with 92% accuracy, so we effectuated the detection of existing fraudulent numbers on the telecommunications operator’s network. 展开更多
关键词 CDR fraud detection Machine Learning Voice Calls
下载PDF
A Cryptographic-Based Approach for Electricity Theft Detection in Smart Grid 被引量:2
17
作者 Khelifi Naim Benahmed Khelifa Bounaama Fateh 《Computers, Materials & Continua》 SCIE EI 2020年第4期97-117,共21页
In order to strengthen their security issues,electrical companies devote particular efforts to developing and enhancing their fraud detection techniques that cope with the information and communication technologies in... In order to strengthen their security issues,electrical companies devote particular efforts to developing and enhancing their fraud detection techniques that cope with the information and communication technologies integration in smart grid fields.Having been treated earlier by several researchers,various detection schemes adapted from attack models that benefit from the smart grid topologies weaknesses,aiming primarily to the identification of suspicious incoming hazards.Wireless meshes have been extensively used in smart grid communication architectures due to their facility,lightness of conception and low cost installation;however,the communicated packets are still exposed to be intercepted maliciously in order either to falsify pertinent information like the smart meter readings,or to inject false data instead,aiming at electricity theft during the communication phase.For this reason,this paper initiates a novel method based on RSA cryptographic algorithm to detect electricity fraud in smart grid.This new method consists of generating two different cryptograms of one electricity measurement before sending,after which the recipient is used to find the same value after decrypting the two cyphers in a normal case.Otherwise,a fraudulent manipulation could occur during the transmission stage.The presented method allows us to kill two birds with one stone.First,satisfactory outcomes are shown:the algorithm accuracy reaches 100%,from one hand,and the privacy is protected thanks to the cryptology concept on the other hand. 展开更多
关键词 Electricity consumption fraud detection RSA algorithm SECURITY smart grid
下载PDF
Determining of Employee Frauds in Forensic Accounting: A Research on Forensic Cases in the City of Kars in Turkey
18
作者 Duygu Anil Keskin Seyhan Goksu Ozturk 《Journal of Modern Accounting and Auditing》 2013年第6期729-738,共10页
Discovering and preventing the frauds which affect the business organizations negatively require a greater degree of specialism. Detecting a fraud in the organizations is very hard, because not only such a fraud is ex... Discovering and preventing the frauds which affect the business organizations negatively require a greater degree of specialism. Detecting a fraud in the organizations is very hard, because not only such a fraud is exercised by the people who have deep professional knowledge, but they also use some peculiar methods to hide their tricky activities. Therefore, it is obvious that it is necessary to have the fraud examiners and especially fraud auditors who should have deep professional knowledge and experience. The aim of this study is to give some general information about employee fraud, which targets the different functions of the companies, takes many forms, and reaches important levels in recent years, in qualitative point. In this study, firstly, forensic accounting is a highly dynamic area in nowadays which is related to fraud auditing and its profession, and its search area of frauds and employee frauds subjects have been reviewed. Finally, qualitative data were collected about fraud incidents which had occurred and been sent to the court in the province of Kars in Turkey. Actual case analysis method has been used in this study. The obtained data have been analyzed by using Statistical Package for the Social Sciences (SPSS) 17 statistics package program. Results of the study have been discussed and interpreted in details. 展开更多
关键词 forensic accounting M41 fraud M49 fraud detection M42 employee frauds
下载PDF
Principal Model Analysis Based on Bagging PLS and PCA and Its Application in Financial Statement Fraud 被引量:1
19
作者 Xiao LIANG Qiwei XIE +2 位作者 Chunyan LUO Liang TANG Yi SUN 《Journal of Systems Science and Information》 CSCD 2024年第2期212-228,共17页
Motivated by the Bagging Partial Least Squares(Bagging PLS)and Principal Component Analysis(PCA)algorithms,a novel approach known as Principal Model Analysis(PMA)method is introduced in this paper.In the proposed PMA ... Motivated by the Bagging Partial Least Squares(Bagging PLS)and Principal Component Analysis(PCA)algorithms,a novel approach known as Principal Model Analysis(PMA)method is introduced in this paper.In the proposed PMA algorithm,the PCA and the Bagging PLS are combined.In this method,multiple PLS models are trained on sub-training sets,derived from the training set using the random sampling with replacement approach.The regression coefficients of all the sub-PLS models are fused in a joint regression coefficient matrix.The final projection direction is then estimated by performing the PCA on the joint regression coefficient matrix.Subsequently,the proposed PMA method is compared with other traditional dimension reduction methods,such as PLS,Bagging PLS,Linear discriminant analysis(LDA)and PLS-LDA.Experimental results on six public datasets demonstrate that our proposed method consistently outperforms other approaches in terms of classification performance and exhibits greater stability.Additionally,it is employed in the application of financial statement fraud identification.PMA and other five algorithms are utilized to financial statement fraud which concerned by the academic community,and the results indicate that the classification of PMA surpassed that of the other methods. 展开更多
关键词 principal model analysis partial least squares principal component analysis dimension reduction ensemble learning financial statement fraud detection
原文传递
Auto Insurance Fraud Detection with Multimodal Learning
20
作者 Jiaxi Yang Kui Chen +2 位作者 Kai Ding Chongning Na Meng Wang 《Data Intelligence》 EI 2023年第2期388-412,共25页
In recent years,feature engineering-based machine learning models have made significant progress in auto insurance fraud detection.However,most models or systems focused only on structural data and did not utilize mul... In recent years,feature engineering-based machine learning models have made significant progress in auto insurance fraud detection.However,most models or systems focused only on structural data and did not utilize multi-modal data to improve fraud detection efficiency.To solve this problem,we adapt both natural language processing and computer vision techniques to our knowledge-based algorithm and construct an Auto Insurance Multi-modal Learning(AIML)framework.We then apply AIML to detect fraud behavior in auto insurance cases with data from real scenarios and conduct experiments to examine the improvement in model performance with multi-modal data compared to baseline model with structural data only.A selfdesigned Semi-Auto Feature Engineer(SAFE)algorithm to process auto insurance data and a visual data processing framework are embedded within AIML.Results show that AIML substantially improves the model performance in detecting fraud behavior compared to models that only use structural data. 展开更多
关键词 Auto Insurance Multi-modal Learning fraud detection Ensemble learning
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部