It is well known that the subclass of inverse semigroups and the subclass of completely regular semigroups of the class of regular semigroups form the so called e-varieties of semigroups. However, the class of regular...It is well known that the subclass of inverse semigroups and the subclass of completely regular semigroups of the class of regular semigroups form the so called e-varieties of semigroups. However, the class of regular semigroups with inverse transversals does not belong to this variety. We now call this class of semigroups the ist-variety of semigroups, and denote it by IST . In this paper, we consider the class of orthodox semigroups with inverse transversals, which is a special ist-variety and is denoted by OIST . Some previous results given by Tang and Wang on this topic are extended. In particular, the structure of free bands with inverse transversals is investigated. Results of McAlister, McFadden, Blyth and Saito on semigroups with inverse transversals are hence generalized and enriched.展开更多
Amyloid fibrils are deposited in various tissues in the body, and are linked to the putative causes of serious diseases such as amyloidosis. Although the conditions of the disease would be expected to improve if the f...Amyloid fibrils are deposited in various tissues in the body, and are linked to the putative causes of serious diseases such as amyloidosis. Although the conditions of the disease would be expected to improve if the fibril structure could be destroyed, the aggregated structure is stable under physiological conditions. Recently, we found that the amyloid fibrils of lysozyme could be refolded into their active form by using a mid-infrared free-electron laser (MIR-FEL) tuned to the amide I band (corresponding to the C=O stretch vibration), with the MIR-FEL having specific oscillation characteristics of a picosecond pulse structure, a tunable wavelength within mid-infrared frequencies, and high photon density. In the study, we tested the usability of the FEL for dissociation of aggregates of pathological amyloid fibrils by using a short peptide of human thyroid hormone. The fibrils (after being placed on a glass slide) were irradiated using the FEL tuned to the amide I band (1644 cm?1), and those in situ were analyzed by Congo-Red assay, scanning-electron microscopy, and transmission-electron microscopy. All of the results obtained using these microscopic analyses indicated that the amyloid fibril formation was considerably decreased by FEL irradiation. Moreover, upon irradiation, a strong fibril peak at the amide I band in the infrared spectrum was transformed into a broad peak. These results imply that the β-sheet-rich structure of the amyloid fibrils changed into non-ordered or unspecified structures after the FEL irradiation. This FEL irradiation system, combined with various analytical methods, shows promise for the dissociation of amyloid aggregates.展开更多
基金supported by National Natural Science Foundation of China (Grant No.10571061)
文摘It is well known that the subclass of inverse semigroups and the subclass of completely regular semigroups of the class of regular semigroups form the so called e-varieties of semigroups. However, the class of regular semigroups with inverse transversals does not belong to this variety. We now call this class of semigroups the ist-variety of semigroups, and denote it by IST . In this paper, we consider the class of orthodox semigroups with inverse transversals, which is a special ist-variety and is denoted by OIST . Some previous results given by Tang and Wang on this topic are extended. In particular, the structure of free bands with inverse transversals is investigated. Results of McAlister, McFadden, Blyth and Saito on semigroups with inverse transversals are hence generalized and enriched.
文摘Amyloid fibrils are deposited in various tissues in the body, and are linked to the putative causes of serious diseases such as amyloidosis. Although the conditions of the disease would be expected to improve if the fibril structure could be destroyed, the aggregated structure is stable under physiological conditions. Recently, we found that the amyloid fibrils of lysozyme could be refolded into their active form by using a mid-infrared free-electron laser (MIR-FEL) tuned to the amide I band (corresponding to the C=O stretch vibration), with the MIR-FEL having specific oscillation characteristics of a picosecond pulse structure, a tunable wavelength within mid-infrared frequencies, and high photon density. In the study, we tested the usability of the FEL for dissociation of aggregates of pathological amyloid fibrils by using a short peptide of human thyroid hormone. The fibrils (after being placed on a glass slide) were irradiated using the FEL tuned to the amide I band (1644 cm?1), and those in situ were analyzed by Congo-Red assay, scanning-electron microscopy, and transmission-electron microscopy. All of the results obtained using these microscopic analyses indicated that the amyloid fibril formation was considerably decreased by FEL irradiation. Moreover, upon irradiation, a strong fibril peak at the amide I band in the infrared spectrum was transformed into a broad peak. These results imply that the β-sheet-rich structure of the amyloid fibrils changed into non-ordered or unspecified structures after the FEL irradiation. This FEL irradiation system, combined with various analytical methods, shows promise for the dissociation of amyloid aggregates.