In this paper,we investigate the evolution of spatiotemporal patterns and synchronization transitions in dependence on the information transmission delay and ion channel blocking in scale-free neuronal networks.As the...In this paper,we investigate the evolution of spatiotemporal patterns and synchronization transitions in dependence on the information transmission delay and ion channel blocking in scale-free neuronal networks.As the underlying model of neuronal dynamics,we use the Hodgkin-Huxley equations incorporating channel blocking and intrinsic noise.It is shown that delays play a significant yet subtle role in shaping the dynamics of neuronal networks.In particular,regions of irregular and regular propagating excitatory fronts related to the synchronization transitions appear intermittently as the delay increases.Moreover,the fraction of working sodium and potassium ion channels can also have a significant impact on the spatiotemporal dynamics of neuronal networks.As the fraction of blocked sodium channels increases,the frequency of excitatory events decreases,which in turn manifests as an increase in the neuronal synchrony that,however,is dysfunctional due to the virtual absence of large-amplitude excitations.Expectedly,we also show that larger coupling strengths improve synchronization irrespective of the information transmission delay and channel blocking.The presented results are also robust against the variation of the network size,thus providing insights that could facilitate understanding of the joint impact of ion channel blocking and information transmission delay on the spatiotemporal dynamics of neuronal networks.展开更多
Polyazoamide(PAA) was used as initiator to prepare block copolymer P(MMA-b-St) byfree radical polymerization. The fraction of block copolymer was about 50%. The structureof the block-copolymer was characterized by...Polyazoamide(PAA) was used as initiator to prepare block copolymer P(MMA-b-St) byfree radical polymerization. The fraction of block copolymer was about 50%. The structureof the block-copolymer was characterized by IR and the results of;H-NMR and GPCshowed that the content of the block and the molecular weight (M;) of the prepolymerand block copolymer could be controlled by varying the mol ratio of styrene/PAA andMMA/prepolymer. DSC and TEM results revealed that the block copolymer has twoseparated glass transition temperatures and phase separation within the domain structure.展开更多
基金supported by the National Natural Science Foundation of China(11172017 and 10972001)the Fujian Natural Science Foundation of China(2009J05004)a Key Project of Fujian Provincial Universities(Information Technology Research Based on Mathematics)
文摘In this paper,we investigate the evolution of spatiotemporal patterns and synchronization transitions in dependence on the information transmission delay and ion channel blocking in scale-free neuronal networks.As the underlying model of neuronal dynamics,we use the Hodgkin-Huxley equations incorporating channel blocking and intrinsic noise.It is shown that delays play a significant yet subtle role in shaping the dynamics of neuronal networks.In particular,regions of irregular and regular propagating excitatory fronts related to the synchronization transitions appear intermittently as the delay increases.Moreover,the fraction of working sodium and potassium ion channels can also have a significant impact on the spatiotemporal dynamics of neuronal networks.As the fraction of blocked sodium channels increases,the frequency of excitatory events decreases,which in turn manifests as an increase in the neuronal synchrony that,however,is dysfunctional due to the virtual absence of large-amplitude excitations.Expectedly,we also show that larger coupling strengths improve synchronization irrespective of the information transmission delay and channel blocking.The presented results are also robust against the variation of the network size,thus providing insights that could facilitate understanding of the joint impact of ion channel blocking and information transmission delay on the spatiotemporal dynamics of neuronal networks.
文摘Polyazoamide(PAA) was used as initiator to prepare block copolymer P(MMA-b-St) byfree radical polymerization. The fraction of block copolymer was about 50%. The structureof the block-copolymer was characterized by IR and the results of;H-NMR and GPCshowed that the content of the block and the molecular weight (M;) of the prepolymerand block copolymer could be controlled by varying the mol ratio of styrene/PAA andMMA/prepolymer. DSC and TEM results revealed that the block copolymer has twoseparated glass transition temperatures and phase separation within the domain structure.