Two shapes of Co_3O_4 nanoarrays(i.e., nanosheets, nanowires) with different densities of exposed catalytic active sites were synthesized through a facile hydrothermal method on Ni foam substrates and tested as the bi...Two shapes of Co_3O_4 nanoarrays(i.e., nanosheets, nanowires) with different densities of exposed catalytic active sites were synthesized through a facile hydrothermal method on Ni foam substrates and tested as the binder/carbon free and free-standing cathodes for Li–O_2 batteries. Particularly, the single crystalline feature of Co_3O_4 nanosheets with a predominant high reactivity {112} exposed crystal plane and hierarchical porous nanostructure displayed better catalytic performance for both oxygen reduction reaction(during discharge process) and oxygen evolution reaction(during charge process). Li–O_2 battery with Co_3O_4 nanosheets cathode exhibited a higher discharge specific capacity(965 m Ah g^(-1)), lower discharge/charge over-potential and better cycling performance over 63 cycles at 100 mA g^(-1) with the specific capacity limited at 300 mAh g^(-1). The superior catalytic performance of Co_3O_4 nanosheets cathode is ascribed to the enlarging specific area and increasing the exposed Co^(3+) catalytic active sites within predominant {112} crystal plane which plays the key role in determining the adsorption energy for the reactants, enabling high round-trip efficiency and cyclic life.展开更多
基金supported by the Key Program of Equipment PreResearch Foundation of China(6140721020103)the National Basic Research Program of China(973 Program)(2013CB934001)the National Natural Science Foundation of China(51074011 and51274017)
文摘Two shapes of Co_3O_4 nanoarrays(i.e., nanosheets, nanowires) with different densities of exposed catalytic active sites were synthesized through a facile hydrothermal method on Ni foam substrates and tested as the binder/carbon free and free-standing cathodes for Li–O_2 batteries. Particularly, the single crystalline feature of Co_3O_4 nanosheets with a predominant high reactivity {112} exposed crystal plane and hierarchical porous nanostructure displayed better catalytic performance for both oxygen reduction reaction(during discharge process) and oxygen evolution reaction(during charge process). Li–O_2 battery with Co_3O_4 nanosheets cathode exhibited a higher discharge specific capacity(965 m Ah g^(-1)), lower discharge/charge over-potential and better cycling performance over 63 cycles at 100 mA g^(-1) with the specific capacity limited at 300 mAh g^(-1). The superior catalytic performance of Co_3O_4 nanosheets cathode is ascribed to the enlarging specific area and increasing the exposed Co^(3+) catalytic active sites within predominant {112} crystal plane which plays the key role in determining the adsorption energy for the reactants, enabling high round-trip efficiency and cyclic life.