Evidence⁃based practices of public health will benefit from quantification of passive physical activity assessment.This study aims to investigate the reliability of marker⁃free system(MFS)such as Microsoft Kinect in m...Evidence⁃based practices of public health will benefit from quantification of passive physical activity assessment.This study aims to investigate the reliability of marker⁃free system(MFS)such as Microsoft Kinect in measuring upper extremity motion from different angles.Ten healthy participants performed elbow and shoulder extension/flexion along frontal and median anatomical planes for ten pace⁃controlled repetitions,during which the spatiotemporal positions of upper extremity joints were concurrently recorded by two sensors from 0°and 45°viewing angles.Reliability between the two sensors were evaluated using Pearson correlation coefficient,intra⁃class correlation coefficients,and 95%limits of agreement and coefficient of variation.Worse reliability was observed when possibility of occlusion was higher.However,better reliability was found when longer observation interval(10 s)was used as elementary measuring unit than shorter observation interval(2 s).The overall angular reliability of activity as displacement or changes in angle was not satisfactory.The results are expected to inform the industry for the extension of MFS to clinic applications.展开更多
A profound approach about dual arm robot collision free motion planning is made. The method of configuration space is first and successfully applied to the collision free motion planning of dual arm robot, and a n...A profound approach about dual arm robot collision free motion planning is made. The method of configuration space is first and successfully applied to the collision free motion planning of dual arm robot, and a new concept, slave arm collision state graph, is presented. In this algorithm ,the problem of dual arm robot collision free motion planning is reduced to a search in the collision state graph. With this algorithm, a time optimum trajectory would be found, or the condition that there is no feasible solution for the slave arm is proved. A verification of this algorithm is made in the dual arm horizontal articulated robot SCARATES, and the results ascertain that the algorithm is feasible and effective.展开更多
In this paper, towing tank experiments are conducted to study the behavior of flow on a model of the underwater vehicle with various shapes of bows, i.e. tango and standard bows in free surface motion tests. The total...In this paper, towing tank experiments are conducted to study the behavior of flow on a model of the underwater vehicle with various shapes of bows, i.e. tango and standard bows in free surface motion tests. The total resistances for different Froude numbers are considered experimentally. The towing tank is equipped with a trolley that can operate in through 0.05-6 m/s speed with ±0.02 m/s accuracy. Furthermore, the study is done on hydrodynamic coefficients i.e. total, residual and friction resistance coefficients, and the results are compared. Finally, the study on flow of wave fields around bows is done and wave filed around two bows are compared. The Froude number interval is between 0.099 and 0.349. Blockage fraction for the model is fixed to 0.005 3. The results showed that the residual resistance of the standard bow in 0.19 to 0.3 Froude number is more than the tango bow in surface motion which causes more total resistance for the submarine. Finally, details of wave generated by the bow are depicted and the effects of flow pattern on resistance drag are discussed.展开更多
To solve the problems concerning water entry of a structure, the RANS equations and volume of fluid (VOF) method are used. Combining the user-defined function (UDF) procedure with dynamic grids, the water impact o...To solve the problems concerning water entry of a structure, the RANS equations and volume of fluid (VOF) method are used. Combining the user-defined function (UDF) procedure with dynamic grids, the water impact on a structure in free fall is simulated, and the velocity, displacement and the pressure distribution on the structure are investigated. The results of the numerical simulation were compared with the experimental data, and solidly consistent results have been achieved, which validates the numerical model. Therefore, this method can be used to study the water impact problems of a structure.展开更多
In this paper a nonlinear model of convective and inertial motion of atmosphere with damping is studied with Melnikov's function method. The results show that in the atmospheric motion under periodic forcing chaos...In this paper a nonlinear model of convective and inertial motion of atmosphere with damping is studied with Melnikov's function method. The results show that in the atmospheric motion under periodic forcing chaos can occur independently whether the atmospheric motion is stable or not; and it is the key to produce chaos that the distribution of relevant physical quantity is nonlinear and periodically drives exists. The formulae calculating the parameter ranger in which chaos occur are given as well.展开更多
The operational cloud-motion tracking technique fails to retrieve atmospheric motion vectors (AMVs) in areas lacking cloud; and while water vapor shown in water vapor imagery can be used, the heights assigned to the...The operational cloud-motion tracking technique fails to retrieve atmospheric motion vectors (AMVs) in areas lacking cloud; and while water vapor shown in water vapor imagery can be used, the heights assigned to the retrieved AMVs are mostly in the upper troposphere. As the noise-equivalent temperature difference (NEdT) performance of FY-2E split win- dow (10.3-11.5 μm, 11.6-12.8 μm) channels has been improved, the weak signals representing the spatial texture of water vapor and aerosols in cloud-free areas can be strengthened with algorithms based on the difference principle, and applied in calculating AMVs in the lower troposphere. This paper is a preliminary summary for this purpose, in which the principles and algorithm schemes for the temporal difference, split window difference and second-order difference (SD) methods are introduced. Results from simulation and cases experiments are reported in order to verify and evaluate the methods, based on comparison among retrievals and the "truth". The results show that all three algorithms, though not perfect in some cases, generally work well. Moreover, the SD method appears to be the best in suppressing the surface temperature influence and clarifying the spatial texture of water vapor and aerosols. The accuracy with respect to NCEP 800 hPa reanalysis data was found to be acceptable, as compared with the accuracy of the cloud motion vectors.展开更多
Free-fall of a sphere in fluid is investigated at a Galileo number of 204 by direct numerical simulations(DNS). We mainly focus on the effects of different degrees-of-freedom(DOFs) of the sphere motion during free-fal...Free-fall of a sphere in fluid is investigated at a Galileo number of 204 by direct numerical simulations(DNS). We mainly focus on the effects of different degrees-of-freedom(DOFs) of the sphere motion during free-fall. The characteristics of free-fall are compared with those of flow past a fixed sphere. Additional numerical tests are conducted with constraints placed on the translational or rotational DOFs of the sphere motion to analyze different DOFs of sphere motion. The transverse motion contributes significantly to the characteristics of free-fall; it results in the retardation of the vortex shedding, leading to the decrease of the Strouhal number. In addition, the transversal sphere motion exhibits the tendency to promote the sphere rotation. On the contrary, the effects of the sphere rotation and vertical oscillations during free-fall are negligible.展开更多
The nonholonomic motion planning of a free-falling cat is investigated. Nonholonomicity arises in a free-falling cat subject to nonintegrable angle velocity constraints or nonintegrable conservation laws. When the tot...The nonholonomic motion planning of a free-falling cat is investigated. Nonholonomicity arises in a free-falling cat subject to nonintegrable angle velocity constraints or nonintegrable conservation laws. When the total angular momentum is zero, the motion equation of a free-falling cat is established based on the model of two symmetric rigid bodies and conservation of angular momentum. The control of system can be converted to the problem of nonholonomic motion planning for a free-falling cat. Based on Ritz approximation theory, the Gauss-Newton method for motion planning by a falling cat is proposed. The effectiveness of the numerical algorithm is demonstrated through simulation on model of a free-falling cat.展开更多
This paper investigates the motion planning of redundant free-floating manipulators with seven prismatic joints. On the earth, prismatic-jointed manipulators could only position their end-effectors in a desired way. H...This paper investigates the motion planning of redundant free-floating manipulators with seven prismatic joints. On the earth, prismatic-jointed manipulators could only position their end-effectors in a desired way. However, in space, the end-effectors of free-floating manipulators can achieve both the desired orientation and desired position due to the dynamical coupling between manipulator and satellite movement, which is formally expressed by linear and angular momentum conservation laws. In this study, a tractable algorithm particle swarm optimization combined with differential evolution (PSODE) is provided to deal with the motion planning of redundant free-floating prismatic-jointed manipulators, which could avoid the pseudo inverse of the Jacobian matrix. The polynomial functions, as argument in sine functions are used to specify the joint paths. The co- efficients of the polynomials are optimized to achieve the desired end-effector orientation and position, and simulta- neously minimize the unit-mass-kinetic energy using the redundancy. Relevant simulations prove that this method pro- vides satisfactory smooth paths for redundant free-floating prismatic-jointed manipulators. This study could help to recognize the advantages of redundant prismatic-jointed space manipulators.展开更多
The motion planning problem of a free flying space robot (FFSR) is investigated and from the attitude disturbance characteristics of a multi arm FFSR, a new method based on the fixed attitude restricted (FAR) Gene...The motion planning problem of a free flying space robot (FFSR) is investigated and from the attitude disturbance characteristics of a multi arm FFSR, a new method based on the fixed attitude restricted (FAR) Generalized Jacobian Matrix of a multi arm FFSR is proposed to enable the coordinated motion of all the other arms while one arm is tracing a given path so that there is no disturbance on the body, and the problem of attitude disturbance with an operating multi arm FFSR is thereby better resolved. The simulation run with a dual arm FFSR system verifies the effectiveness of this algorithm.展开更多
基金Sponsored by the National Natural Science Foundation of China(Grant No.51708152)the Science and Technology Innovation Committee of Shenzhen Municipality(Grant No.JCYJ20170811155435737).
文摘Evidence⁃based practices of public health will benefit from quantification of passive physical activity assessment.This study aims to investigate the reliability of marker⁃free system(MFS)such as Microsoft Kinect in measuring upper extremity motion from different angles.Ten healthy participants performed elbow and shoulder extension/flexion along frontal and median anatomical planes for ten pace⁃controlled repetitions,during which the spatiotemporal positions of upper extremity joints were concurrently recorded by two sensors from 0°and 45°viewing angles.Reliability between the two sensors were evaluated using Pearson correlation coefficient,intra⁃class correlation coefficients,and 95%limits of agreement and coefficient of variation.Worse reliability was observed when possibility of occlusion was higher.However,better reliability was found when longer observation interval(10 s)was used as elementary measuring unit than shorter observation interval(2 s).The overall angular reliability of activity as displacement or changes in angle was not satisfactory.The results are expected to inform the industry for the extension of MFS to clinic applications.
文摘A profound approach about dual arm robot collision free motion planning is made. The method of configuration space is first and successfully applied to the collision free motion planning of dual arm robot, and a new concept, slave arm collision state graph, is presented. In this algorithm ,the problem of dual arm robot collision free motion planning is reduced to a search in the collision state graph. With this algorithm, a time optimum trajectory would be found, or the condition that there is no feasible solution for the slave arm is proved. A verification of this algorithm is made in the dual arm horizontal articulated robot SCARATES, and the results ascertain that the algorithm is feasible and effective.
文摘In this paper, towing tank experiments are conducted to study the behavior of flow on a model of the underwater vehicle with various shapes of bows, i.e. tango and standard bows in free surface motion tests. The total resistances for different Froude numbers are considered experimentally. The towing tank is equipped with a trolley that can operate in through 0.05-6 m/s speed with ±0.02 m/s accuracy. Furthermore, the study is done on hydrodynamic coefficients i.e. total, residual and friction resistance coefficients, and the results are compared. Finally, the study on flow of wave fields around bows is done and wave filed around two bows are compared. The Froude number interval is between 0.099 and 0.349. Blockage fraction for the model is fixed to 0.005 3. The results showed that the residual resistance of the standard bow in 0.19 to 0.3 Froude number is more than the tango bow in surface motion which causes more total resistance for the submarine. Finally, details of wave generated by the bow are depicted and the effects of flow pattern on resistance drag are discussed.
基金Foundation item: Supported by the of China (11302056), China National Natural Science Foundation Postdoctoral Science Foundation (2013M540272), Heilongjiang Postdoctoral Fund (LBH-ZI3051), the Fundamental Research Funds for the Central Universities (HEUCF140116) and Research Fund of State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University (1309).
文摘To solve the problems concerning water entry of a structure, the RANS equations and volume of fluid (VOF) method are used. Combining the user-defined function (UDF) procedure with dynamic grids, the water impact on a structure in free fall is simulated, and the velocity, displacement and the pressure distribution on the structure are investigated. The results of the numerical simulation were compared with the experimental data, and solidly consistent results have been achieved, which validates the numerical model. Therefore, this method can be used to study the water impact problems of a structure.
文摘In this paper a nonlinear model of convective and inertial motion of atmosphere with damping is studied with Melnikov's function method. The results show that in the atmospheric motion under periodic forcing chaos can occur independently whether the atmospheric motion is stable or not; and it is the key to produce chaos that the distribution of relevant physical quantity is nonlinear and periodically drives exists. The formulae calculating the parameter ranger in which chaos occur are given as well.
基金supported by the National Natural Science Foundation of China(Grant Nos.41175035 and 40475018)the National Basic Research Program of China(Grant No.2009CB421502)a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘The operational cloud-motion tracking technique fails to retrieve atmospheric motion vectors (AMVs) in areas lacking cloud; and while water vapor shown in water vapor imagery can be used, the heights assigned to the retrieved AMVs are mostly in the upper troposphere. As the noise-equivalent temperature difference (NEdT) performance of FY-2E split win- dow (10.3-11.5 μm, 11.6-12.8 μm) channels has been improved, the weak signals representing the spatial texture of water vapor and aerosols in cloud-free areas can be strengthened with algorithms based on the difference principle, and applied in calculating AMVs in the lower troposphere. This paper is a preliminary summary for this purpose, in which the principles and algorithm schemes for the temporal difference, split window difference and second-order difference (SD) methods are introduced. Results from simulation and cases experiments are reported in order to verify and evaluate the methods, based on comparison among retrievals and the "truth". The results show that all three algorithms, though not perfect in some cases, generally work well. Moreover, the SD method appears to be the best in suppressing the surface temperature influence and clarifying the spatial texture of water vapor and aerosols. The accuracy with respect to NCEP 800 hPa reanalysis data was found to be acceptable, as compared with the accuracy of the cloud motion vectors.
基金financially supported by the National Key Research and Development Program of China(Grant No.2016YFC0304103)the National Natural Science Foundation of China(Grant No.51509152)
文摘Free-fall of a sphere in fluid is investigated at a Galileo number of 204 by direct numerical simulations(DNS). We mainly focus on the effects of different degrees-of-freedom(DOFs) of the sphere motion during free-fall. The characteristics of free-fall are compared with those of flow past a fixed sphere. Additional numerical tests are conducted with constraints placed on the translational or rotational DOFs of the sphere motion to analyze different DOFs of sphere motion. The transverse motion contributes significantly to the characteristics of free-fall; it results in the retardation of the vortex shedding, leading to the decrease of the Strouhal number. In addition, the transversal sphere motion exhibits the tendency to promote the sphere rotation. On the contrary, the effects of the sphere rotation and vertical oscillations during free-fall are negligible.
基金Project supported by the National Natural Science Foundation of China (No.10372014)the Natural Science Foundation of Beijing (No.1072008)
文摘The nonholonomic motion planning of a free-falling cat is investigated. Nonholonomicity arises in a free-falling cat subject to nonintegrable angle velocity constraints or nonintegrable conservation laws. When the total angular momentum is zero, the motion equation of a free-falling cat is established based on the model of two symmetric rigid bodies and conservation of angular momentum. The control of system can be converted to the problem of nonholonomic motion planning for a free-falling cat. Based on Ritz approximation theory, the Gauss-Newton method for motion planning by a falling cat is proposed. The effectiveness of the numerical algorithm is demonstrated through simulation on model of a free-falling cat.
基金supported by the National Natural Science Foundation of China (11072122)
文摘This paper investigates the motion planning of redundant free-floating manipulators with seven prismatic joints. On the earth, prismatic-jointed manipulators could only position their end-effectors in a desired way. However, in space, the end-effectors of free-floating manipulators can achieve both the desired orientation and desired position due to the dynamical coupling between manipulator and satellite movement, which is formally expressed by linear and angular momentum conservation laws. In this study, a tractable algorithm particle swarm optimization combined with differential evolution (PSODE) is provided to deal with the motion planning of redundant free-floating prismatic-jointed manipulators, which could avoid the pseudo inverse of the Jacobian matrix. The polynomial functions, as argument in sine functions are used to specify the joint paths. The co- efficients of the polynomials are optimized to achieve the desired end-effector orientation and position, and simulta- neously minimize the unit-mass-kinetic energy using the redundancy. Relevant simulations prove that this method pro- vides satisfactory smooth paths for redundant free-floating prismatic-jointed manipulators. This study could help to recognize the advantages of redundant prismatic-jointed space manipulators.
文摘The motion planning problem of a free flying space robot (FFSR) is investigated and from the attitude disturbance characteristics of a multi arm FFSR, a new method based on the fixed attitude restricted (FAR) Generalized Jacobian Matrix of a multi arm FFSR is proposed to enable the coordinated motion of all the other arms while one arm is tracing a given path so that there is no disturbance on the body, and the problem of attitude disturbance with an operating multi arm FFSR is thereby better resolved. The simulation run with a dual arm FFSR system verifies the effectiveness of this algorithm.