Polymeric materials are ubiquitously utilized in modern society and continuously improve quality of life.Unfortunately,most of them suffer from intrinsic flammability,significantly limiting their practical application...Polymeric materials are ubiquitously utilized in modern society and continuously improve quality of life.Unfortunately,most of them suffer from intrinsic flammability,significantly limiting their practical applications.Fundamentally,free-radical reaction is a critical“trigger”for their thermal pyrolysis and following combustion process regardless of the anaerobic thermal pyrolysis in the condensed phase or aerobic combustion of polymers in the gaseous phase.The addition of free radical scavengers represents a promising and effective means to enhance the fire safety of polymeric materials.This review aims to offer a state-of-the-art overview on the creation of fire-retardant polymeric nanocomposites by adding fire retardants with an ability to trap free radicals.Their specific modes of action(condensed-phase action,gaseous-phase action,and dual-phases action)and performances in some typical polymers are reviewed and discussed in detail.Following this,some key challenges associated with these free-radical capturers are discussed,and design strategies are also proposed.This review provides some insights into the modes of action of free radical capturing agents and paves the avenue for the design of advanced fire-retardant polymeric nanocomposites for expanded real-world applications in industries.展开更多
The use of intumescent flame retardants(IFRs)is considered an environmentally friendly and cost-effective strategy to suppress potential fire hazards from synthetic polymers.However,some conventional IFRs are neither ...The use of intumescent flame retardants(IFRs)is considered an environmentally friendly and cost-effective strategy to suppress potential fire hazards from synthetic polymers.However,some conventional IFRs are neither efficient in developing a thermally stable char layer nor reducing the release of toxic byproducts during polymer combustion.In this work,we aim to discuss the effects of zeolitic imidazolate frameworks(ZIFs)on synergistically improving the flame retardancy behaviors in polypropylene(PP)composites,including thermal degradation(evolved gas analysis),free radical reactions in the gaseous phase(in-situ chemiluminescent image analysis),and carbonaceous structure in the condensed phase(micro-morphology and composition analysis).It is found that the transition metals in ZIFs can catalytically accelerate the crosslinking reaction at a lower initial temperature and decrease the amount of hydrocarbon volatiles in the gaseous phase.Once ignited,the embedded ZIFs can firstly bridge adjacent phosphorus chains in the polymer matrix to expand crosslinking degrees and then they are anchored in the developed N-doped phospho-carbonaceous networks after pyrolysis.As a result,more compact char residue structures are observed in the condensed phase for ZIF-reinforced composites.For example,by replacing 2 wt%of IFR with ZIF-67,the peak heat release rate,peak smoke production rate,and peak CO production rate are reduced by 69%,80%,and 72%,respectively,when compared to the conventional composite.These results indicate an excellent solution to resolve inherent fire hazards associated with IFRs in polymers and achieve necessary efficiency for industrial applications.It also provides a new strategy for determining flammability characteristics and combustion mechanisms of polymer composites using in-situ chemiluminescence analysis.展开更多
基金This work was financially supported by the National Natural Science Foundation of China(grant numbers:51991355,51873196,and 52173083)the Australian Research Council(grant numbers:FT190100188 and DP190102992)+1 种基金the Non-profit Project of Science and Technology Department of Ningbo(grant number:2019C50029)Public Technical Application Project of Zhejiang in Industry(grant number:LGG21E030004).
文摘Polymeric materials are ubiquitously utilized in modern society and continuously improve quality of life.Unfortunately,most of them suffer from intrinsic flammability,significantly limiting their practical applications.Fundamentally,free-radical reaction is a critical“trigger”for their thermal pyrolysis and following combustion process regardless of the anaerobic thermal pyrolysis in the condensed phase or aerobic combustion of polymers in the gaseous phase.The addition of free radical scavengers represents a promising and effective means to enhance the fire safety of polymeric materials.This review aims to offer a state-of-the-art overview on the creation of fire-retardant polymeric nanocomposites by adding fire retardants with an ability to trap free radicals.Their specific modes of action(condensed-phase action,gaseous-phase action,and dual-phases action)and performances in some typical polymers are reviewed and discussed in detail.Following this,some key challenges associated with these free-radical capturers are discussed,and design strategies are also proposed.This review provides some insights into the modes of action of free radical capturing agents and paves the avenue for the design of advanced fire-retardant polymeric nanocomposites for expanded real-world applications in industries.
文摘The use of intumescent flame retardants(IFRs)is considered an environmentally friendly and cost-effective strategy to suppress potential fire hazards from synthetic polymers.However,some conventional IFRs are neither efficient in developing a thermally stable char layer nor reducing the release of toxic byproducts during polymer combustion.In this work,we aim to discuss the effects of zeolitic imidazolate frameworks(ZIFs)on synergistically improving the flame retardancy behaviors in polypropylene(PP)composites,including thermal degradation(evolved gas analysis),free radical reactions in the gaseous phase(in-situ chemiluminescent image analysis),and carbonaceous structure in the condensed phase(micro-morphology and composition analysis).It is found that the transition metals in ZIFs can catalytically accelerate the crosslinking reaction at a lower initial temperature and decrease the amount of hydrocarbon volatiles in the gaseous phase.Once ignited,the embedded ZIFs can firstly bridge adjacent phosphorus chains in the polymer matrix to expand crosslinking degrees and then they are anchored in the developed N-doped phospho-carbonaceous networks after pyrolysis.As a result,more compact char residue structures are observed in the condensed phase for ZIF-reinforced composites.For example,by replacing 2 wt%of IFR with ZIF-67,the peak heat release rate,peak smoke production rate,and peak CO production rate are reduced by 69%,80%,and 72%,respectively,when compared to the conventional composite.These results indicate an excellent solution to resolve inherent fire hazards associated with IFRs in polymers and achieve necessary efficiency for industrial applications.It also provides a new strategy for determining flammability characteristics and combustion mechanisms of polymer composites using in-situ chemiluminescence analysis.