Free-standing diamond films, deposited using DC Arc Plasma Jet CVD method onto graphite substrates with titanium interlayers, have been investigated. The Ti interlayers were deposited by arc ion plating equipments. Th...Free-standing diamond films, deposited using DC Arc Plasma Jet CVD method onto graphite substrates with titanium interlayers, have been investigated. The Ti interlayers were deposited by arc ion plating equipments. The thickness, morphology and composite phase of Ti interlayers were examined by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The titanium carbide (TiC) was detected in both sides of the interlayers, which played an important role with respect to reasonable adhesion with film and diamond nucleation. The semi-translucent diamond films were characterized by SEM and Raman spectrum. The sharp diamond peak with low intensity of amorphous carbon shows that diamond films have very high quality. The overall results suggest that plating Ti interlayer on graphite substrate is an effective way to obtain optical grade free-standing diamond films.展开更多
Recently,with the rapid development of chemical vapor deposition(CVD)technology,large area free-standing CVD diamond films have been produced successfully.However,the coarse grain size on the surface and the non-unifo...Recently,with the rapid development of chemical vapor deposition(CVD)technology,large area free-standing CVD diamond films have been produced successfully.However,the coarse grain size on the surface and the non-uniform thickness of unprocessed CVD diamond films make it difficult to meet the application requirement.The current study evaluates several existing polishing methods for CVD diamond films,including mechanical polishing,chemical mechanical polishing and tribochemical polishing technology.展开更多
Free-standing diamond films were prepared by hot filament chemical vapor deposition (HFCVD) method under different conditions. Inter-digital transducers (IDTs) were formed on the nucleation sides of free-standing diam...Free-standing diamond films were prepared by hot filament chemical vapor deposition (HFCVD) method under different conditions. Inter-digital transducers (IDTs) were formed on the nucleation sides of free-standing diamond films by photolithography technique. Then piezoelectric ZnO films were deposited by radio-frequency(RF) reactive magnetron sputtering to obtain the ZnO/diamond film structures. Surface morphologies of the nucleation sides and the IDTs were characterized by means of scanning electron microscopy (SEM), atomic force microscope (AFM) and optical microscopy. The results indicate that the surfaces of nucleation sides are very smooth and the IDTs are of high quality without discontinuity and short circuit phenomenon. Raman spectra show the sharp diamond feature peak at about 1 334 cm?1 and the small amount of non-diamond carbon in the nucleation side. X-ray diffraction (XRD) patterns of the structure of ZnO/diamond films show a strong diffraction peak of ZnO (002), which indicates that as-sputtered ZnO films are highly c-axis oriented.展开更多
Free-standing diamond films have been successfully deposited on stainless steel substrates using microwave plasma-assisted chemical vapor deposition. Although iron, which is the main element of stainless steel, is kno...Free-standing diamond films have been successfully deposited on stainless steel substrates using microwave plasma-assisted chemical vapor deposition. Although iron, which is the main element of stainless steel, is known to inhibit the nucleation of diamond and enhance the formation of graphite, we were able to grow relatively thick films (-1.2 mm). The films were easily detachable from the substrates. The poor adhesion made it possible to obtain free-standing diamond films without chemical etching. Raman spectroscopy showed the 1332 cm^-1 characteristic Raman peak of diamond and the 1580 cm^-1, 1350 cm^-1 bands of graphite on the growth surface and backside of the films, respectively. By energy dispersive X-ray spectroscopy it was only possible to detect iron on the back of the films, but not on the surface. The role of iron in the film growth is discussed.展开更多
Highly c-axis-oriented ZnO films were deposited successfully on the nucleation sides of free-standing diamond (FD) films by the direct current (DC) magnetron sputtering method. The effect of the sputtering paramet...Highly c-axis-oriented ZnO films were deposited successfully on the nucleation sides of free-standing diamond (FD) films by the direct current (DC) magnetron sputtering method. The effect of the sputtering parameters, such as power, gas pressure and sputtering plasma composition of Ar-to-O2, on the properties of ZnO thin films was investigated in detail. X-ray diffraction (XRD) measurements showed that, at a sputtering power of 200 W, gas pressure of 0.5 Pa and an Ar-to- O2 composition of 1:1, a higher intensity of the (002) diffraction peak and a narrower full width at half maximum (FWHM) were detected which meant high c-axis orientation and high quality of the ZnO films. To improve the quality of the ZnO film, a thin ZnO layer was pre-grown as a homo-buffer layer. XRD measurements showed that this buffer layer had a beneficial effect on the structural and morphological properties of the post-grown ZnO film.展开更多
The structure characteristic and electric performance of ZnO film deposited on nucleation side of free-standing diamond substrates under different heating temperatures (Th) of substrate and working pressures (p) were ...The structure characteristic and electric performance of ZnO film deposited on nucleation side of free-standing diamond substrates under different heating temperatures (Th) of substrate and working pressures (p) were studied. The structure of the ZnO films tested by X-ray diffraction shows that ZnO film of high c-axis orientation is deposited on the nucleation side of free-standing diamond substrate which is extremely smooth when Th=250 ℃ and p=0.4 Pa. After annealing at 480 ℃ in N2 atmosphere, the SEM and the AFM analyses demonstrate that the c-axis orientation of ZnO film is obviously enhanced. The resistivity of ZnO films also increases up to 8×105 ■·cm which is observed by I?V test.展开更多
Chemical vapor deposited (CVD) diamond film has broad application foreground in high-tech fields. But polycrystalline CVD self-standing diamond thick film has rough surface and non-uniform thickness that adversely a...Chemical vapor deposited (CVD) diamond film has broad application foreground in high-tech fields. But polycrystalline CVD self-standing diamond thick film has rough surface and non-uniform thickness that adversely affect its extensive applications. Laser polishing is a useful method to smooth self-standing diamond film. At present, attentions have been focused on experimental research on laser polishing, but the revealing of theoretical model and the forecast of polishing process are vacant. The paper presents a finite element model to simulate and analyze the mechanism of laser polishing diamond based on laser thermal conduction theory. The experimental investigation is also carried out on Nd:YAG pulsed laser smoothing diamond thick film. The simulation results have good accordance with the results of experimental results. The temperature and thermal stress fields are investigated at different incidence angles and parameters of Nd:YAG pulsed laser. The pyramidal-like roughness of diamond thick film leads to the non-homogeneous temperature fields. The temperature at the peak of diamond film is much higher than that in the valley, which leads to the smoothing of diamond thick film. The effect of laser parameters on the surface roughness and thickness of graphite transition layer is also carried out. The results show that high power density laser makes the diamond surface rapid heating, evaporation and sublimation after its graphitization. It is also found that the good polish quality of diamond thick film can be obtained by a combination of large incident angle, moderate laser pulsed energy, large repetition rate and moderate laser pulse width. The results obtained here provide the theoretical basis for laser polishing diamond film with high efficiency and high quality.展开更多
Under optimal conditions free-standing high quality diamond films were prepared by DC arc plasma jet CVD method at a growth rate of 7-10 Pm/h. Surface and cross section morphologies of the diamond films were observed ...Under optimal conditions free-standing high quality diamond films were prepared by DC arc plasma jet CVD method at a growth rate of 7-10 Pm/h. Surface and cross section morphologies of the diamond films were observed by SEM. Raman spectrometer wasused to characterize the quality of diamond films. The IR transmittivity measured by IR spectrometer is close to the theoretical value ofabout 71% in the far infrared band. The thermal conductivity measured by photothermal deflection exceeds 18 W/cm' K. <l 10> is thepreferential growth orientation of the films detected by X-ray diffractometer. As s result, the extremely high temperature of DC arc plasma jet can produce supersaturated atomic hydrogen, which played an important role in the process for the deposition of high quality diamond films.展开更多
Diamond films have great potential for micro-electro-mechanical system(MEMS) application.For device realization,precise patterning of diamond films at micrometer scale is indispensable.In this paper,simple and facil...Diamond films have great potential for micro-electro-mechanical system(MEMS) application.For device realization,precise patterning of diamond films at micrometer scale is indispensable.In this paper,simple and facile methods will be demonstrated for smart patterning of diamond films,in which two etching techniques,i.e.,plasma dry etching and chemical wet etching(including isotropic-etching and anisotropic-etching) have been developed for obtaining diamond microstructures with different morphology demands.Free-standing diamond micro-gears and micro-combs were achieved as examples by using the experimental procedures.It is confirmed that as-designed diamond structures with a straight side wall and a distinct boundary can be fabricated effectively and efficiently by using such methods.展开更多
基金financially supported by the Graduate Student Foundation of University of Science and Technology BeijingNational Natural Science Foundation of China
文摘Free-standing diamond films, deposited using DC Arc Plasma Jet CVD method onto graphite substrates with titanium interlayers, have been investigated. The Ti interlayers were deposited by arc ion plating equipments. The thickness, morphology and composite phase of Ti interlayers were examined by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The titanium carbide (TiC) was detected in both sides of the interlayers, which played an important role with respect to reasonable adhesion with film and diamond nucleation. The semi-translucent diamond films were characterized by SEM and Raman spectrum. The sharp diamond peak with low intensity of amorphous carbon shows that diamond films have very high quality. The overall results suggest that plating Ti interlayer on graphite substrate is an effective way to obtain optical grade free-standing diamond films.
基金Science and technology plan project of Hebei Academy of Sciences(No.191408)Natural Science Foundation of Hebei Province(E2019302005)
文摘Recently,with the rapid development of chemical vapor deposition(CVD)technology,large area free-standing CVD diamond films have been produced successfully.However,the coarse grain size on the surface and the non-uniform thickness of unprocessed CVD diamond films make it difficult to meet the application requirement.The current study evaluates several existing polishing methods for CVD diamond films,including mechanical polishing,chemical mechanical polishing and tribochemical polishing technology.
基金Projects(60577040) supported by the National Natural Science Foundation of China Project(0404) supported by the Shanghai Foundation of Applied Materials Research and Development+1 种基金 Projects(0452nm051, 05nm05046) supported by the Nano-technology Project of Shanghai Project(T0101) supported by the Shanghai Leading Academic Disciplines
文摘Free-standing diamond films were prepared by hot filament chemical vapor deposition (HFCVD) method under different conditions. Inter-digital transducers (IDTs) were formed on the nucleation sides of free-standing diamond films by photolithography technique. Then piezoelectric ZnO films were deposited by radio-frequency(RF) reactive magnetron sputtering to obtain the ZnO/diamond film structures. Surface morphologies of the nucleation sides and the IDTs were characterized by means of scanning electron microscopy (SEM), atomic force microscope (AFM) and optical microscopy. The results indicate that the surfaces of nucleation sides are very smooth and the IDTs are of high quality without discontinuity and short circuit phenomenon. Raman spectra show the sharp diamond feature peak at about 1 334 cm?1 and the small amount of non-diamond carbon in the nucleation side. X-ray diffraction (XRD) patterns of the structure of ZnO/diamond films show a strong diffraction peak of ZnO (002), which indicates that as-sputtered ZnO films are highly c-axis oriented.
文摘Free-standing diamond films have been successfully deposited on stainless steel substrates using microwave plasma-assisted chemical vapor deposition. Although iron, which is the main element of stainless steel, is known to inhibit the nucleation of diamond and enhance the formation of graphite, we were able to grow relatively thick films (-1.2 mm). The films were easily detachable from the substrates. The poor adhesion made it possible to obtain free-standing diamond films without chemical etching. Raman spectroscopy showed the 1332 cm^-1 characteristic Raman peak of diamond and the 1580 cm^-1, 1350 cm^-1 bands of graphite on the growth surface and backside of the films, respectively. By energy dispersive X-ray spectroscopy it was only possible to detect iron on the back of the films, but not on the surface. The role of iron in the film growth is discussed.
基金National Natural Science Foundation of China (Nos.60577040,60877017)Program for Changjiang Scholars,Innovative Research Team in University of China (No.IRT0739)+1 种基金Innovation Program of Shanghai Municipal Education Commission of China (08YZ04)Shanghai Leading Academic Disciplines of China (S30107)
文摘Highly c-axis-oriented ZnO films were deposited successfully on the nucleation sides of free-standing diamond (FD) films by the direct current (DC) magnetron sputtering method. The effect of the sputtering parameters, such as power, gas pressure and sputtering plasma composition of Ar-to-O2, on the properties of ZnO thin films was investigated in detail. X-ray diffraction (XRD) measurements showed that, at a sputtering power of 200 W, gas pressure of 0.5 Pa and an Ar-to- O2 composition of 1:1, a higher intensity of the (002) diffraction peak and a narrower full width at half maximum (FWHM) were detected which meant high c-axis orientation and high quality of the ZnO films. To improve the quality of the ZnO film, a thin ZnO layer was pre-grown as a homo-buffer layer. XRD measurements showed that this buffer layer had a beneficial effect on the structural and morphological properties of the post-grown ZnO film.
基金Project (60577040) supported by the National Natural Science Foundation of China Project (0404) supported by the Shanghai Foundation of Applied Materials Research and Development+1 种基金 Projects(0452nm051, 05nm05046) supported by the Nano-technology Project of Shanghai Project (T0101) supported by the Shanghai Leading Academic Disciplines
文摘The structure characteristic and electric performance of ZnO film deposited on nucleation side of free-standing diamond substrates under different heating temperatures (Th) of substrate and working pressures (p) were studied. The structure of the ZnO films tested by X-ray diffraction shows that ZnO film of high c-axis orientation is deposited on the nucleation side of free-standing diamond substrate which is extremely smooth when Th=250 ℃ and p=0.4 Pa. After annealing at 480 ℃ in N2 atmosphere, the SEM and the AFM analyses demonstrate that the c-axis orientation of ZnO film is obviously enhanced. The resistivity of ZnO films also increases up to 8×105 ■·cm which is observed by I?V test.
基金supported by National Natural Science Foundation of China (Grant No. 51005117)Graduate Innovation Fund of Nanjing University of Aeronautics and Astronautics,China (Grant No.KFJJ20110223)Priority Academic Program Development of Jiangsu Higher Education Institutions of China (PAPD)
文摘Chemical vapor deposited (CVD) diamond film has broad application foreground in high-tech fields. But polycrystalline CVD self-standing diamond thick film has rough surface and non-uniform thickness that adversely affect its extensive applications. Laser polishing is a useful method to smooth self-standing diamond film. At present, attentions have been focused on experimental research on laser polishing, but the revealing of theoretical model and the forecast of polishing process are vacant. The paper presents a finite element model to simulate and analyze the mechanism of laser polishing diamond based on laser thermal conduction theory. The experimental investigation is also carried out on Nd:YAG pulsed laser smoothing diamond thick film. The simulation results have good accordance with the results of experimental results. The temperature and thermal stress fields are investigated at different incidence angles and parameters of Nd:YAG pulsed laser. The pyramidal-like roughness of diamond thick film leads to the non-homogeneous temperature fields. The temperature at the peak of diamond film is much higher than that in the valley, which leads to the smoothing of diamond thick film. The effect of laser parameters on the surface roughness and thickness of graphite transition layer is also carried out. The results show that high power density laser makes the diamond surface rapid heating, evaporation and sublimation after its graphitization. It is also found that the good polish quality of diamond thick film can be obtained by a combination of large incident angle, moderate laser pulsed energy, large repetition rate and moderate laser pulse width. The results obtained here provide the theoretical basis for laser polishing diamond film with high efficiency and high quality.
文摘Under optimal conditions free-standing high quality diamond films were prepared by DC arc plasma jet CVD method at a growth rate of 7-10 Pm/h. Surface and cross section morphologies of the diamond films were observed by SEM. Raman spectrometer wasused to characterize the quality of diamond films. The IR transmittivity measured by IR spectrometer is close to the theoretical value ofabout 71% in the far infrared band. The thermal conductivity measured by photothermal deflection exceeds 18 W/cm' K. <l 10> is thepreferential growth orientation of the films detected by X-ray diffractometer. As s result, the extremely high temperature of DC arc plasma jet can produce supersaturated atomic hydrogen, which played an important role in the process for the deposition of high quality diamond films.
基金supported by National Natural Science Foundation of China(No.60908023)the Open Project of State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials of China(No.Ilzxfkl9)
文摘Diamond films have great potential for micro-electro-mechanical system(MEMS) application.For device realization,precise patterning of diamond films at micrometer scale is indispensable.In this paper,simple and facile methods will be demonstrated for smart patterning of diamond films,in which two etching techniques,i.e.,plasma dry etching and chemical wet etching(including isotropic-etching and anisotropic-etching) have been developed for obtaining diamond microstructures with different morphology demands.Free-standing diamond micro-gears and micro-combs were achieved as examples by using the experimental procedures.It is confirmed that as-designed diamond structures with a straight side wall and a distinct boundary can be fabricated effectively and efficiently by using such methods.