The occurrence of liquid condensation in natural gas accounts for new challenges during the interoperability between transmission networks,where condensation would lead to higher pressure drops,lower line capacity and...The occurrence of liquid condensation in natural gas accounts for new challenges during the interoperability between transmission networks,where condensation would lead to higher pressure drops,lower line capacity and may cause safety problem.A successful case of hydrocarbon dew point(HCDP)analysis is demonstrated during the mixing of natural gases in the transmission pipeline.Methods used to predict the HCDP are combined with equations of state(EOS)and characterization of C6+heavy components.Predictions are compared with measured HCDP with different concentrations of mixed gases at a wide range of pressure and temperature scopes.Software named"PipeGasAnalysis"is developed and helps to systematic analyze the condensation problem,which will provide the guidance for the design and operation of the network.展开更多
Based on the analysis of experimental data, tbe semiemperical formulas of the gasgain in proportional and limited proportional regions are derived. A model of gas multipli-cation in proportional region is proposed. Th...Based on the analysis of experimental data, tbe semiemperical formulas of the gasgain in proportional and limited proportional regions are derived. A model of gas multipli-cation in proportional region is proposed. The saturation formula of the energy response inlimited proportional region which is different from the Birks law is proposed. The effectsof primary ionization and track orientation are discussed.展开更多
We report on a comparison study of the 3He gas proportional tube and the 6Li incorporated scintillation glasses on thermal neutron detection efficiency. Both 3He and 6Li are used commonly for thermal neutron detection...We report on a comparison study of the 3He gas proportional tube and the 6Li incorporated scintillation glasses on thermal neutron detection efficiency. Both 3He and 6Li are used commonly for thermal neutron detection because of their high neutron capture absorption coefficient. By using a neutron source 252Cf and a paraffin moderator in an alignment system, we can get a small beam of thermal neutrons. A flash ADC is used to measure the thermal neutron spectrum of each detector, and the detected number of events is determined from the spectrum, then we can calculate the detection efficiency of different detectors. Meanwhile, the experiment has been modeled with GEANT4 to validate the results against the Monte Carlo simulation.展开更多
Neutron detection is used in a wide range of applications in nuclear physics,radiation protection,nuclear fuel cycle,reactor instrumentation,security and industrial measurement.Among the detectors used in this field,w...Neutron detection is used in a wide range of applications in nuclear physics,radiation protection,nuclear fuel cycle,reactor instrumentation,security and industrial measurement.Among the detectors used in this field,we notice the gas-filled 3He proportional counters which have been one of the main detecting tools for thermal and cold neutron detection for many years.This last characteristic has ensured that this detector is one of the best tools for thermal neutron flux measurements in a nuclear reactor control.In the instrumentation and detection laboratory of the Nuclear Research Center,of Birine,we are working toward the design and the development of this type of detectors,indeed,several prototypes of neutron detectors have been realized including the 3He proportional counters.Through this paper,we will present the experimental steps and the obtained results to carry out a 3He proportional counter prototype that was fully developed and tested in our laboratory.A comparison study was made between our detector and a commercial cylindrical 3He neutron detector which was considered in this work as a reference detector:LND252(3He)-PC.The results showed that the characteristics of the gas amplification and the counting plateau for the two counters reference LND 252(3He)-PC and our prototype was of the same order of scale.The experimental tests show that our developed prototype perfect fit with the standard International Electrotechnical Commission(IEC,www.iec.ch)in the operating principle,the technology adopted and obtained technical specifications.展开更多
基金Project(2011ZX05026-004-03)supported by the Key National Science and Technology Specific Program,ChinaProject(NCET-12-0969)supported by the Program for New Century Excellent Talents in University,China+1 种基金Project(51104167)supported by the National Natural Science Foundation of ChinaProject(BJ-2011-02)supported by the Research Funds of China University of Petroleum-Beijing
文摘The occurrence of liquid condensation in natural gas accounts for new challenges during the interoperability between transmission networks,where condensation would lead to higher pressure drops,lower line capacity and may cause safety problem.A successful case of hydrocarbon dew point(HCDP)analysis is demonstrated during the mixing of natural gases in the transmission pipeline.Methods used to predict the HCDP are combined with equations of state(EOS)and characterization of C6+heavy components.Predictions are compared with measured HCDP with different concentrations of mixed gases at a wide range of pressure and temperature scopes.Software named"PipeGasAnalysis"is developed and helps to systematic analyze the condensation problem,which will provide the guidance for the design and operation of the network.
文摘Based on the analysis of experimental data, tbe semiemperical formulas of the gasgain in proportional and limited proportional regions are derived. A model of gas multipli-cation in proportional region is proposed. The saturation formula of the energy response inlimited proportional region which is different from the Birks law is proposed. The effectsof primary ionization and track orientation are discussed.
基金National Natural Science Foundation of China (11061140514)
文摘We report on a comparison study of the 3He gas proportional tube and the 6Li incorporated scintillation glasses on thermal neutron detection efficiency. Both 3He and 6Li are used commonly for thermal neutron detection because of their high neutron capture absorption coefficient. By using a neutron source 252Cf and a paraffin moderator in an alignment system, we can get a small beam of thermal neutrons. A flash ADC is used to measure the thermal neutron spectrum of each detector, and the detected number of events is determined from the spectrum, then we can calculate the detection efficiency of different detectors. Meanwhile, the experiment has been modeled with GEANT4 to validate the results against the Monte Carlo simulation.
文摘Neutron detection is used in a wide range of applications in nuclear physics,radiation protection,nuclear fuel cycle,reactor instrumentation,security and industrial measurement.Among the detectors used in this field,we notice the gas-filled 3He proportional counters which have been one of the main detecting tools for thermal and cold neutron detection for many years.This last characteristic has ensured that this detector is one of the best tools for thermal neutron flux measurements in a nuclear reactor control.In the instrumentation and detection laboratory of the Nuclear Research Center,of Birine,we are working toward the design and the development of this type of detectors,indeed,several prototypes of neutron detectors have been realized including the 3He proportional counters.Through this paper,we will present the experimental steps and the obtained results to carry out a 3He proportional counter prototype that was fully developed and tested in our laboratory.A comparison study was made between our detector and a commercial cylindrical 3He neutron detector which was considered in this work as a reference detector:LND252(3He)-PC.The results showed that the characteristics of the gas amplification and the counting plateau for the two counters reference LND 252(3He)-PC and our prototype was of the same order of scale.The experimental tests show that our developed prototype perfect fit with the standard International Electrotechnical Commission(IEC,www.iec.ch)in the operating principle,the technology adopted and obtained technical specifications.