At a rice wheat rotational free air CO 2 enrichment(FACE) platform, the effect of elevated atmospheric CO 2 on soil nematode communities in a farmland ecosystem was studied. Wheat plots were exposed to elevated atmosp...At a rice wheat rotational free air CO 2 enrichment(FACE) platform, the effect of elevated atmospheric CO 2 on soil nematode communities in a farmland ecosystem was studied. Wheat plots were exposed to elevated atmospheric CO 2(ambient 370 μl/L + 200 μl/L). 32 families and 40 genera of nematode were observed in soil suspensions during the study period. Under FACE treatment, the numbers of total nematodes, bacterivores and fungivores exhibited an increasing trend. Because of the seasonal variation of soil temperature and moisture, the effect of elevated atmospheric CO 2 on soil nematodes was only observed under favorable conditions. The response of nematode communities to elevated atmospheric CO 2 may indicate the change of soil food web.展开更多
Free air CO2 enrichment(FACE) and nitrogen(N) have marked effects on rice root growth,and numerical simulation can explain these effects. To further define the effects of FACE on root growth of rice, an experiment was...Free air CO2 enrichment(FACE) and nitrogen(N) have marked effects on rice root growth,and numerical simulation can explain these effects. To further define the effects of FACE on root growth of rice, an experiment was performed, using the hybrid indica cultivar Xianyou63. The effects of increasing atmospheric CO2 concentration [CO2], 200 μmol mol-1higher than ambient, on the growth of rice adventitious roots were evaluated, with two levels of N: low(LN, 125 kg ha-1) and normal(NN, 250 kg ha-1). The results showed a significant increase in both adventitious root number(ARN) and adventitious root length(ARL) under FACE treatment. The application of nitrogen also increased ARN and ARL, but these increases were smaller than that under FACE treatment. On the basis of the FACE experiment, numerical models for rice adventitious root number and length were constructed with time as the driving factor. The models illustrated the dynamic development of rice adventitious root number and length after transplanting, regulated either by atmospheric [CO2] or by N application.The simulation result was supported by statistical tests comparing experimental data from different years, and the model yields realistic predictions of root growth. These results suggest that the models have strong predictive potential under conditions of atmospheric [CO2] rises in the future.展开更多
A hydroponics experiment was conducted to investigate the rice root growth in FACE (free-air carbon dioxide enrichment). The root biomass, root volume, ratio of root/shoot, number of adventitious roots and root diam...A hydroponics experiment was conducted to investigate the rice root growth in FACE (free-air carbon dioxide enrichment). The root biomass, root volume, ratio of root/shoot, number of adventitious roots and root diameter significantly increased under FACE conditions, while the CO2 enrichment decreased the N concentration in rice roots without any change in the C content, leading to an increase in root C:N ratio. Moreover, the elevated CO2 resulted in a remarkable decrease of root activity, expressed as per unit root dry weight, which might be responsible for decreased N concentration in roots.展开更多
The increase of atmospheric carbon dioxide(CO_2) concentration adversely affect several quality traits of rice grains, but the biochemical mechanism remains unclear. The objectives of this study were to determine ho...The increase of atmospheric carbon dioxide(CO_2) concentration adversely affect several quality traits of rice grains, but the biochemical mechanism remains unclear. The objectives of this study were to determine how changes in the source-sink relationship affected rice quality. Source-sink manipulation was achieved by free-air CO_2 enrichment from tillering to maturity and partial removal of spikelet at anthesis using a japonica rice cultivar Wuyunjing 23. Enrichment with CO_2 decreased the head rice percentage and protein concentration of milled rice, but increased the grain chalkiness. In contrast, spikelet removal resulted in a dramatic increase in the head rice percentage and protein concentration, and much less grain chalkiness. Neither CO_2 enrichment nor spikelet removal affected the starch content, but the distribution of starch granule size showed distinct treatment effects. O n average, spikelet removal decreased the percentage of starch granules of diameter 〉10 and 5–10 μm by 23.6 and 5.6%, respectively, and increased those with a diameter of 2–5 and 〈2 μm by 4.6 and 3.3%, respectively. In contrast, CO_2 elevation showed an opposite response: increasing the proportion of large starch granules(〉5 μm) and decreasing that of 〈5 μm. The starch pasting properties were affected by spikelet removal much more than by CO_2 elevation. These results indicated that the protein concentration and starch granule size played a role in chalkiness formation under these experimental conditions.展开更多
人类活动导致的大气和气候变化将极大地改变作物的生长环境,其中最大的一个变化就是大气二氧化碳(CO2)浓度的迅速上升:从工业革命前的平均270μmol/mol上升到目前的381μmol/mol,到2050年至少超过550μmol/mol。FACE(Free-air CO2 enric...人类活动导致的大气和气候变化将极大地改变作物的生长环境,其中最大的一个变化就是大气二氧化碳(CO2)浓度的迅速上升:从工业革命前的平均270μmol/mol上升到目前的381μmol/mol,到2050年至少超过550μmol/mol。FACE(Free-air CO2 enrichment,开放式空气中CO2浓度增高)试验是目前评估未来高浓度CO2对作物生长和产量实际影响的最佳方法。水稻无疑是人类最重要的食物来源,迄今为止人类利用FACE技术开展水稻响应和适应的研究已有10a(19982008年)的历史。以生长发育为主线,首次系统综述了10a水稻FACE试验在该领域的研究成果,总结了FACE情形下高浓度CO2(模拟本世纪中叶大气CO2浓度)对主要供试水稻品种(小区面积大于4m2)光合作用、生育进程、地上部生长、地下部生长、物质分配、籽粒灌浆、产量构成以及倒伏性状等影响的研究进展,比较了FACE与非FACE研究之间以及中国和日本FACE研究(世界上唯一的两个大型水稻FACE研究)之间的异同点。根据研究进展以及当前的技术水平,文章最后提出了该领域的3个优先课题:(1)FACE情形下杂交稻生产力响应高于预期的生物学机制;(2)FACE情形下CO2与主要栽培措施的互作效应;(3)FACE情形下CO2与主要空气污染物臭氧的互作效应。这些响应的机理性解析将有助于从根本上减少人类预测未来粮食安全的不确定性,进而更加有效地制订出应对全球变化的适应策略。展开更多
在2009和2010年利用独特的稻/麦轮作系统FACE(Free Air CO2 Enrichment,开放式空气CO2浓度增高)平台,以武运粳21、扬辐粳8号、武香粳14和武粳15为供试材料,研究了高浓度CO(2比大气背景CO2浓度高200 μmol·mol-1)对粳稻蒸煮米的硬...在2009和2010年利用独特的稻/麦轮作系统FACE(Free Air CO2 Enrichment,开放式空气CO2浓度增高)平台,以武运粳21、扬辐粳8号、武香粳14和武粳15为供试材料,研究了高浓度CO(2比大气背景CO2浓度高200 μmol·mol-1)对粳稻蒸煮米的硬度、粘性、香气、光泽、完整性、味道和口感等的影响。物性分析仪测定结果表明,高浓度CO2环境下粳稻熟米的硬度和粘性总体呈增加趋势,其中扬辐粳8号两指标的增幅均达显著水平。食味计测定结果显示,高浓度CO2对蒸煮稻米香气、光泽度、完整性、味道和口感等食味品质指标均没有影响。相关分析表明,CO2与品种的互作对米饭硬度和粘性有显著影响,但对食味品质参数均没有影响。CO2与年度、CO2与年度和品种间的互作对所有测定参数均无显著影响。两年数据一致表明,未来高浓度CO2环境下粳稻蒸煮米的硬度和粘性将呈增加趋势,增幅因品种而异,但米饭食味品质无显著变化。展开更多
Increasing attentions have been paid to mineral concentration decrease in milled rice grains caused by CO2 enrichment, but the mechanisms still remain unclear. Therefore, mineral (Ca, Mg, Fe, Zn and Mn) translocatio...Increasing attentions have been paid to mineral concentration decrease in milled rice grains caused by CO2 enrichment, but the mechanisms still remain unclear. Therefore, mineral (Ca, Mg, Fe, Zn and Mn) translocation in plant-soil system with a FACE (Free-air CO2 enrichment) experiment were investigated in Eastern China after 4-yr operation. Results mainly showed that: (1) elevated CO2 significantly increased the biomass of stem and panicle by 21.9 and 24.0%, respectively, but did not affect the leaf biomass. (2) Elevated CO2 significantly increased the contents of Ca, Mg, Fe, Zn, and Mn in panicle by 61.2, 28.9, 87.0, 36.7, and 66.0%, respectively, and in stem by 13.2, 21.3, 47.2, 91.8, and 25.2%, respectively, but did not affect them in leaf. (3) Elevated CO2 had positive effects on the weight ratio of mineral/biomass in stem and panicle. Our results suggest that elevated CO2 can favor the translocation of Ca, Mg, Fe, Zn, and Mn from soil to stem and panicle. The CO2-led mineral decline in milled rice grains may mainly attribute to the CO2-1ed unbalanced stimulations on the translocations of minerals and carbohydrates from vegetative parts (e.g., leaf, stem, branch and husk) to the grains.展开更多
利用稻田FACE(Free Air CO_2 Enrichment)平台,以创造世界高产纪录的超级稻组合‘Y两优2号’为试验材料,CO_2处理设环境CO_2浓度[(382.5±2.0)μmol·mol-1]和高CO_2浓度(增200μmol·mol-1)两个水平,齐穗期源库改变设对照...利用稻田FACE(Free Air CO_2 Enrichment)平台,以创造世界高产纪录的超级稻组合‘Y两优2号’为试验材料,CO_2处理设环境CO_2浓度[(382.5±2.0)μmol·mol-1]和高CO_2浓度(增200μmol·mol-1)两个水平,齐穗期源库改变设对照、剪除剑叶(剪1叶)、剪除所有功能叶(剪3叶)以及相间剪除一次枝梗(疏花),研究开放条件下高CO_2浓度对不同源库处理水稻产量及其构成因子的影响。结果表明,对没有进行剪叶疏花处理的水稻(即对照)而言,高CO_2浓度使‘Y两优2号’籽粒产量平均增加12%,这主要与每穗颖花数和结实能力均略有增加有关。高CO_2浓度使剪1叶、剪3叶处理水稻的产量分别增加26%和57%,这主要与饱粒率和所有籽粒平均粒重均大幅增加有关。对齐穗期疏花处理水稻而言,高CO_2浓度导致的产量增幅与对照水稻接近。与对照相比,齐穗期剪1叶、剪3叶处理使水稻籽粒产量分别降低17%和52%,均达极显著水平,这主要与饱粒率和所有籽粒平均粒重均显著下降有关;尽管齐穗期疏花处理使水稻结实能力显著增加,但因每穗颖花数减半,产量大幅下降(-29%)。籽粒最终产量对高CO_2浓度的响应与饱粒率和所有籽粒平均粒重的响应呈显著正相关。以上结果表明,水稻齐穗期人为改变源库比例(特别是剪叶)可以改变籽粒结实能力和最终产量对高CO_2浓度的响应。展开更多
文摘At a rice wheat rotational free air CO 2 enrichment(FACE) platform, the effect of elevated atmospheric CO 2 on soil nematode communities in a farmland ecosystem was studied. Wheat plots were exposed to elevated atmospheric CO 2(ambient 370 μl/L + 200 μl/L). 32 families and 40 genera of nematode were observed in soil suspensions during the study period. Under FACE treatment, the numbers of total nematodes, bacterivores and fungivores exhibited an increasing trend. Because of the seasonal variation of soil temperature and moisture, the effect of elevated atmospheric CO 2 on soil nematodes was only observed under favorable conditions. The response of nematode communities to elevated atmospheric CO 2 may indicate the change of soil food web.
基金funded by the National Natural Science Foundation of China(No.30270777)the Key Direction Research of Knowledge Innovation in Chinese Academy of Science(No.KZCX3-SW-440)the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘Free air CO2 enrichment(FACE) and nitrogen(N) have marked effects on rice root growth,and numerical simulation can explain these effects. To further define the effects of FACE on root growth of rice, an experiment was performed, using the hybrid indica cultivar Xianyou63. The effects of increasing atmospheric CO2 concentration [CO2], 200 μmol mol-1higher than ambient, on the growth of rice adventitious roots were evaluated, with two levels of N: low(LN, 125 kg ha-1) and normal(NN, 250 kg ha-1). The results showed a significant increase in both adventitious root number(ARN) and adventitious root length(ARL) under FACE treatment. The application of nitrogen also increased ARN and ARL, but these increases were smaller than that under FACE treatment. On the basis of the FACE experiment, numerical models for rice adventitious root number and length were constructed with time as the driving factor. The models illustrated the dynamic development of rice adventitious root number and length after transplanting, regulated either by atmospheric [CO2] or by N application.The simulation result was supported by statistical tests comparing experimental data from different years, and the model yields realistic predictions of root growth. These results suggest that the models have strong predictive potential under conditions of atmospheric [CO2] rises in the future.
基金National Natural Science Foundation of China (nos. 40231003 , 40110817) Knowledge Innovation Program of Chinese Academy of Sciences (no. KZCX2-408) the National Key Project on Basic Sciences (no. 2002CB714003).
文摘A hydroponics experiment was conducted to investigate the rice root growth in FACE (free-air carbon dioxide enrichment). The root biomass, root volume, ratio of root/shoot, number of adventitious roots and root diameter significantly increased under FACE conditions, while the CO2 enrichment decreased the N concentration in rice roots without any change in the C content, leading to an increase in root C:N ratio. Moreover, the elevated CO2 resulted in a remarkable decrease of root activity, expressed as per unit root dry weight, which might be responsible for decreased N concentration in roots.
基金funded jointly by the National Natural Science Foundation of China(31171460,31371563,31571597,31471437,31261140364)the Major Fundamental Research Program of Natural Science Foundation of Jiangsu Higher Education Institutions,China(11KJA210003)+2 种基金the Jiangsu Planned Projects for Postdoctoral Research Funds,China(1501077C)the China Postdoctoral Science Foundation(2015M581870)the Priority Academic Program Development of Jiangsu Higher Education Institutions,China
文摘The increase of atmospheric carbon dioxide(CO_2) concentration adversely affect several quality traits of rice grains, but the biochemical mechanism remains unclear. The objectives of this study were to determine how changes in the source-sink relationship affected rice quality. Source-sink manipulation was achieved by free-air CO_2 enrichment from tillering to maturity and partial removal of spikelet at anthesis using a japonica rice cultivar Wuyunjing 23. Enrichment with CO_2 decreased the head rice percentage and protein concentration of milled rice, but increased the grain chalkiness. In contrast, spikelet removal resulted in a dramatic increase in the head rice percentage and protein concentration, and much less grain chalkiness. Neither CO_2 enrichment nor spikelet removal affected the starch content, but the distribution of starch granule size showed distinct treatment effects. O n average, spikelet removal decreased the percentage of starch granules of diameter 〉10 and 5–10 μm by 23.6 and 5.6%, respectively, and increased those with a diameter of 2–5 and 〈2 μm by 4.6 and 3.3%, respectively. In contrast, CO_2 elevation showed an opposite response: increasing the proportion of large starch granules(〉5 μm) and decreasing that of 〈5 μm. The starch pasting properties were affected by spikelet removal much more than by CO_2 elevation. These results indicated that the protein concentration and starch granule size played a role in chalkiness formation under these experimental conditions.
文摘人类活动导致的大气和气候变化将极大地改变作物的生长环境,其中最大的一个变化就是大气二氧化碳(CO2)浓度的迅速上升:从工业革命前的平均270μmol/mol上升到目前的381μmol/mol,到2050年至少超过550μmol/mol。FACE(Free-air CO2 enrichment,开放式空气中CO2浓度增高)试验是目前评估未来高浓度CO2对作物生长和产量实际影响的最佳方法。水稻无疑是人类最重要的食物来源,迄今为止人类利用FACE技术开展水稻响应和适应的研究已有10a(19982008年)的历史。以生长发育为主线,首次系统综述了10a水稻FACE试验在该领域的研究成果,总结了FACE情形下高浓度CO2(模拟本世纪中叶大气CO2浓度)对主要供试水稻品种(小区面积大于4m2)光合作用、生育进程、地上部生长、地下部生长、物质分配、籽粒灌浆、产量构成以及倒伏性状等影响的研究进展,比较了FACE与非FACE研究之间以及中国和日本FACE研究(世界上唯一的两个大型水稻FACE研究)之间的异同点。根据研究进展以及当前的技术水平,文章最后提出了该领域的3个优先课题:(1)FACE情形下杂交稻生产力响应高于预期的生物学机制;(2)FACE情形下CO2与主要栽培措施的互作效应;(3)FACE情形下CO2与主要空气污染物臭氧的互作效应。这些响应的机理性解析将有助于从根本上减少人类预测未来粮食安全的不确定性,进而更加有效地制订出应对全球变化的适应策略。
文摘在2009和2010年利用独特的稻/麦轮作系统FACE(Free Air CO2 Enrichment,开放式空气CO2浓度增高)平台,以武运粳21、扬辐粳8号、武香粳14和武粳15为供试材料,研究了高浓度CO(2比大气背景CO2浓度高200 μmol·mol-1)对粳稻蒸煮米的硬度、粘性、香气、光泽、完整性、味道和口感等的影响。物性分析仪测定结果表明,高浓度CO2环境下粳稻熟米的硬度和粘性总体呈增加趋势,其中扬辐粳8号两指标的增幅均达显著水平。食味计测定结果显示,高浓度CO2对蒸煮稻米香气、光泽度、完整性、味道和口感等食味品质指标均没有影响。相关分析表明,CO2与品种的互作对米饭硬度和粘性有显著影响,但对食味品质参数均没有影响。CO2与年度、CO2与年度和品种间的互作对所有测定参数均无显著影响。两年数据一致表明,未来高浓度CO2环境下粳稻蒸煮米的硬度和粘性将呈增加趋势,增幅因品种而异,但米饭食味品质无显著变化。
基金supported by the National Natural Science Foundation of China (31200369)the Lecture and Study for Outstanding Scholars from Home and Abroad,Chinese Academy of Forestry (CAF),2014
文摘Increasing attentions have been paid to mineral concentration decrease in milled rice grains caused by CO2 enrichment, but the mechanisms still remain unclear. Therefore, mineral (Ca, Mg, Fe, Zn and Mn) translocation in plant-soil system with a FACE (Free-air CO2 enrichment) experiment were investigated in Eastern China after 4-yr operation. Results mainly showed that: (1) elevated CO2 significantly increased the biomass of stem and panicle by 21.9 and 24.0%, respectively, but did not affect the leaf biomass. (2) Elevated CO2 significantly increased the contents of Ca, Mg, Fe, Zn, and Mn in panicle by 61.2, 28.9, 87.0, 36.7, and 66.0%, respectively, and in stem by 13.2, 21.3, 47.2, 91.8, and 25.2%, respectively, but did not affect them in leaf. (3) Elevated CO2 had positive effects on the weight ratio of mineral/biomass in stem and panicle. Our results suggest that elevated CO2 can favor the translocation of Ca, Mg, Fe, Zn, and Mn from soil to stem and panicle. The CO2-led mineral decline in milled rice grains may mainly attribute to the CO2-1ed unbalanced stimulations on the translocations of minerals and carbohydrates from vegetative parts (e.g., leaf, stem, branch and husk) to the grains.
文摘利用稻田FACE(Free Air CO_2 Enrichment)平台,以创造世界高产纪录的超级稻组合‘Y两优2号’为试验材料,CO_2处理设环境CO_2浓度[(382.5±2.0)μmol·mol-1]和高CO_2浓度(增200μmol·mol-1)两个水平,齐穗期源库改变设对照、剪除剑叶(剪1叶)、剪除所有功能叶(剪3叶)以及相间剪除一次枝梗(疏花),研究开放条件下高CO_2浓度对不同源库处理水稻产量及其构成因子的影响。结果表明,对没有进行剪叶疏花处理的水稻(即对照)而言,高CO_2浓度使‘Y两优2号’籽粒产量平均增加12%,这主要与每穗颖花数和结实能力均略有增加有关。高CO_2浓度使剪1叶、剪3叶处理水稻的产量分别增加26%和57%,这主要与饱粒率和所有籽粒平均粒重均大幅增加有关。对齐穗期疏花处理水稻而言,高CO_2浓度导致的产量增幅与对照水稻接近。与对照相比,齐穗期剪1叶、剪3叶处理使水稻籽粒产量分别降低17%和52%,均达极显著水平,这主要与饱粒率和所有籽粒平均粒重均显著下降有关;尽管齐穗期疏花处理使水稻结实能力显著增加,但因每穗颖花数减半,产量大幅下降(-29%)。籽粒最终产量对高CO_2浓度的响应与饱粒率和所有籽粒平均粒重的响应呈显著正相关。以上结果表明,水稻齐穗期人为改变源库比例(特别是剪叶)可以改变籽粒结实能力和最终产量对高CO_2浓度的响应。