Piles are long, slender structural elements used to transfer the loads from the superstructure through weak strata onto stiffer soils or rocks. For driven piles, the impact of the piling hammer induces compression and...Piles are long, slender structural elements used to transfer the loads from the superstructure through weak strata onto stiffer soils or rocks. For driven piles, the impact of the piling hammer induces compression and tension stresses in the piles. Hence, an important design consideration is to check that the strength of the pile is sufficient to resist the stresses caused by the impact of the pile hammer. Due to its complexity, pile drivability lacks a precise analytical solution with regard to the phenomena involved.In situations where measured data or numerical hypothetical results are available, neural networks stand out in mapping the nonlinear interactions and relationships between the system’s predictors and dependent responses. In addition, unlike most computational tools, no mathematical relationship assumption between the dependent and independent variables has to be made. Nevertheless, neural networks have been criticized for their long trial-and-error training process since the optimal configuration is not known a priori. This paper investigates the use of a fairly simple nonparametric regression algorithm known as multivariate adaptive regression splines(MARS), as an alternative to neural networks, to approximate the relationship between the inputs and dependent response, and to mathematically interpret the relationship between the various parameters. In this paper, the Back propagation neural network(BPNN) and MARS models are developed for assessing pile drivability in relation to the prediction of the Maximum compressive stresses(MCS), Maximum tensile stresses(MTS), and Blow per foot(BPF). A database of more than four thousand piles is utilized for model development and comparative performance between BPNN and MARS predictions.展开更多
A class of quasi-cubic B-spline base functions by trigonometric polynomials are established which inherit properties similar to those of cubic B-spline bases. The corresponding curves with a shape parameter a, defined...A class of quasi-cubic B-spline base functions by trigonometric polynomials are established which inherit properties similar to those of cubic B-spline bases. The corresponding curves with a shape parameter a, defined by the introduced base functions, include the B-spline curves and can approximate the B-spline curves from both sides. The curves can be adjusted easily by using the shape parameter a, where dpi(a,t) is linear with respect to da for the fixed t. With the shape parameter chosen properly, the defined curves can be used to precisely represent straight line segments, parabola segments, circular arcs and some transcendental curves, and the corresponding tensor product surfaces can also represent spherical surfaces, cylindrical surfaces and some transcendental surfaces exactly. By abandoning positive property, this paper proposes a new C^2 continuous blended interpolation spline based on piecewise trigonometric polynomials associated with a sequence of local parameters. Illustration showed that the curves and surfaces constructed by the blended spline can be adjusted easily and freely. The blended interpolation spline curves can be shape-preserving with proper local parameters since these local parameters can be considered to be the magnification ratio to the length of tangent vectors at the interpolating points. The idea is extended to produce blended spline surfaces.展开更多
Modelling and simulation of projectile flight is at the core of ballistic computer software and is essential to the study of performance of rifles and projectiles in various engagement conditions.An effective and repr...Modelling and simulation of projectile flight is at the core of ballistic computer software and is essential to the study of performance of rifles and projectiles in various engagement conditions.An effective and representative numerical model of projectile flight requires a relatively good approximation of the aerodynamics.The aerodynamic coefficients of the projectile model should be described as a series of piecewise polynomial functions of the Mach number that ideally meet the following conditions:they are continuous,differentiable at least once,and have a relatively low degree.The paper provides the steps needed to generate such piecewise polynomial functions using readily available tools,and then compares Piecewise Cubic Hermite Interpolating Polynomial(PCHIP),cubic splines,and piecewise linear functions,and their variant,as potential curve fitting methods to approximate the aerodynamics of a generic small arms projectile.A key contribution of the paper is the application of PCHIP to the approximation of projectile aerodynamics,and its evaluation against a set of criteria.Finally,the paper provides a baseline assessment of the impact of the polynomial functions on flight trajectory predictions obtained with 6-degree-of-freedom simulations of a generic projectile.展开更多
This study aims to extend the multivariate adaptive regression splines(MARS)-Monte Carlo simulation(MCS) method for reliability analysis of slopes in spatially variable soils. This approach is used to explore the infl...This study aims to extend the multivariate adaptive regression splines(MARS)-Monte Carlo simulation(MCS) method for reliability analysis of slopes in spatially variable soils. This approach is used to explore the influences of the multiscale spatial variability of soil properties on the probability of failure(P_f) of the slopes. In the proposed approach, the relationship between the factor of safety and the soil strength parameters characterized with spatial variability is approximated by the MARS, with the aid of Karhunen-Loeve expansion. MCS is subsequently performed on the established MARS model to evaluate Pf.Finally, a nominally homogeneous cohesive-frictional slope and a heterogeneous cohesive slope, which are both characterized with different spatial variabilities, are utilized to illustrate the proposed approach.Results showed that the proposed approach can estimate the P_f of the slopes efficiently in spatially variable soils with sufficient accuracy. Moreover, the approach is relatively robust to the influence of different statistics of soil properties, thereby making it an effective and practical tool for addressing slope reliability problems concerning time-consuming deterministic stability models with low levels of P_f.Furthermore, disregarding the multiscale spatial variability of soil properties can overestimate or underestimate the P_f. Although the difference is small in general, the multiscale spatial variability of the soil properties must still be considered in the reliability analysis of heterogeneous slopes, especially for those highly related to cost effective and accurate designs.展开更多
Cam profiles play an important part in the performance of cam mechanisms. Syntheses of cam profile designs and dynamics of cam designs are studied at first. Then, a cam profile design optimization model based on the s...Cam profiles play an important part in the performance of cam mechanisms. Syntheses of cam profile designs and dynamics of cam designs are studied at first. Then, a cam profile design optimization model based on the six order classical spline and single DOF(degree of freedom) dynamic model of single-dwell cam mechanisms is developed. And dynamic constraints such as jumps and vibrations of followers are considered. This optimization model, with many advantages such as universalities of applications, conveniences to operations and good performances in improving kinematic and dynamic properties of cam mechanisms, is good except for the discontinuity of jerks at the end knots of cam profiles which will cause vibrations of cam systems. However, the optimization is improved by combining the six order classical spline with general polynomial spline which is the so-called "trade-offs". Finally, improved optimization is proven to have a better performance in designing cam profiles.展开更多
A class of generalized moving average operators is introduced, and the integral representations of an average function are provided. It has been shown that the average of Dirac δ distribution is just the well kn...A class of generalized moving average operators is introduced, and the integral representations of an average function are provided. It has been shown that the average of Dirac δ distribution is just the well known box spline. Some remarks on box splines, such as their smoothness and the corresponding partition of unity, are made. The factorization of average operators is derived. Then, the subdivision algorithm for efficient computing of box splines and their linear combinations follows.展开更多
The assessment of in situ permeability of rock mass is challenging for large-scale projects such as reservoirs created by dams,where water tightness issues are of prime importance.The in situ permeability is strongly ...The assessment of in situ permeability of rock mass is challenging for large-scale projects such as reservoirs created by dams,where water tightness issues are of prime importance.The in situ permeability is strongly related to the frequency and distribution of discontinuities in the rock mass and quantified by rock quality designation(RQD).This paper analyzes the data of hydraulic conductivity and discontinuities sampled at different depths during the borehole investigations in the limestone and sandstone formations for the construction of hydraulic structures in Oman.Cores recovered from boreholes provide RQD data,and in situ Lugeon tests elucidate the permeability.A modern technique of multivariate adaptive regression splines(MARS)assisted in correlating permeability and RQD along with the depth.In situ permeability shows a declining trend with increasing RQD,and the depth of investigation is within 50 m.This type of relationship can be developed based on detailed initial investigations at the site where the hydraulic conductivity of discontinuous rocks is required to be delineated.The relationship can approximate the permeability by only measuring the RQD in later investigations on the same site,thus saving the time and cost of the site investigations.The applicability of the relationship developed in this study to another location requires a lithological similarity of the rock mass that can be verified through preliminary investigation at the site.展开更多
文摘Piles are long, slender structural elements used to transfer the loads from the superstructure through weak strata onto stiffer soils or rocks. For driven piles, the impact of the piling hammer induces compression and tension stresses in the piles. Hence, an important design consideration is to check that the strength of the pile is sufficient to resist the stresses caused by the impact of the pile hammer. Due to its complexity, pile drivability lacks a precise analytical solution with regard to the phenomena involved.In situations where measured data or numerical hypothetical results are available, neural networks stand out in mapping the nonlinear interactions and relationships between the system’s predictors and dependent responses. In addition, unlike most computational tools, no mathematical relationship assumption between the dependent and independent variables has to be made. Nevertheless, neural networks have been criticized for their long trial-and-error training process since the optimal configuration is not known a priori. This paper investigates the use of a fairly simple nonparametric regression algorithm known as multivariate adaptive regression splines(MARS), as an alternative to neural networks, to approximate the relationship between the inputs and dependent response, and to mathematically interpret the relationship between the various parameters. In this paper, the Back propagation neural network(BPNN) and MARS models are developed for assessing pile drivability in relation to the prediction of the Maximum compressive stresses(MCS), Maximum tensile stresses(MTS), and Blow per foot(BPF). A database of more than four thousand piles is utilized for model development and comparative performance between BPNN and MARS predictions.
基金Project supported by the National Natural Science Foundation of China (Nos. 10171026 and 60473114), the Research Funds forYoung Innovation Group, Education Department of Anhui Prov-ince (No. 2005TD03) and the Natural Science Foundation of An-hui Provincial Education Department (No. 2006KJ252B), China
文摘A class of quasi-cubic B-spline base functions by trigonometric polynomials are established which inherit properties similar to those of cubic B-spline bases. The corresponding curves with a shape parameter a, defined by the introduced base functions, include the B-spline curves and can approximate the B-spline curves from both sides. The curves can be adjusted easily by using the shape parameter a, where dpi(a,t) is linear with respect to da for the fixed t. With the shape parameter chosen properly, the defined curves can be used to precisely represent straight line segments, parabola segments, circular arcs and some transcendental curves, and the corresponding tensor product surfaces can also represent spherical surfaces, cylindrical surfaces and some transcendental surfaces exactly. By abandoning positive property, this paper proposes a new C^2 continuous blended interpolation spline based on piecewise trigonometric polynomials associated with a sequence of local parameters. Illustration showed that the curves and surfaces constructed by the blended spline can be adjusted easily and freely. The blended interpolation spline curves can be shape-preserving with proper local parameters since these local parameters can be considered to be the magnification ratio to the length of tangent vectors at the interpolating points. The idea is extended to produce blended spline surfaces.
文摘Modelling and simulation of projectile flight is at the core of ballistic computer software and is essential to the study of performance of rifles and projectiles in various engagement conditions.An effective and representative numerical model of projectile flight requires a relatively good approximation of the aerodynamics.The aerodynamic coefficients of the projectile model should be described as a series of piecewise polynomial functions of the Mach number that ideally meet the following conditions:they are continuous,differentiable at least once,and have a relatively low degree.The paper provides the steps needed to generate such piecewise polynomial functions using readily available tools,and then compares Piecewise Cubic Hermite Interpolating Polynomial(PCHIP),cubic splines,and piecewise linear functions,and their variant,as potential curve fitting methods to approximate the aerodynamics of a generic small arms projectile.A key contribution of the paper is the application of PCHIP to the approximation of projectile aerodynamics,and its evaluation against a set of criteria.Finally,the paper provides a baseline assessment of the impact of the polynomial functions on flight trajectory predictions obtained with 6-degree-of-freedom simulations of a generic projectile.
基金supported by The Hong Kong Polytechnic University through the project RU3Ythe Research Grant Council through the project PolyU 5128/13E+1 种基金National Natural Science Foundation of China(Grant No.51778313)Cooperative Innovation Center of Engineering Construction and Safety in Shangdong Blue Economic Zone
文摘This study aims to extend the multivariate adaptive regression splines(MARS)-Monte Carlo simulation(MCS) method for reliability analysis of slopes in spatially variable soils. This approach is used to explore the influences of the multiscale spatial variability of soil properties on the probability of failure(P_f) of the slopes. In the proposed approach, the relationship between the factor of safety and the soil strength parameters characterized with spatial variability is approximated by the MARS, with the aid of Karhunen-Loeve expansion. MCS is subsequently performed on the established MARS model to evaluate Pf.Finally, a nominally homogeneous cohesive-frictional slope and a heterogeneous cohesive slope, which are both characterized with different spatial variabilities, are utilized to illustrate the proposed approach.Results showed that the proposed approach can estimate the P_f of the slopes efficiently in spatially variable soils with sufficient accuracy. Moreover, the approach is relatively robust to the influence of different statistics of soil properties, thereby making it an effective and practical tool for addressing slope reliability problems concerning time-consuming deterministic stability models with low levels of P_f.Furthermore, disregarding the multiscale spatial variability of soil properties can overestimate or underestimate the P_f. Although the difference is small in general, the multiscale spatial variability of the soil properties must still be considered in the reliability analysis of heterogeneous slopes, especially for those highly related to cost effective and accurate designs.
文摘Cam profiles play an important part in the performance of cam mechanisms. Syntheses of cam profile designs and dynamics of cam designs are studied at first. Then, a cam profile design optimization model based on the six order classical spline and single DOF(degree of freedom) dynamic model of single-dwell cam mechanisms is developed. And dynamic constraints such as jumps and vibrations of followers are considered. This optimization model, with many advantages such as universalities of applications, conveniences to operations and good performances in improving kinematic and dynamic properties of cam mechanisms, is good except for the discontinuity of jerks at the end knots of cam profiles which will cause vibrations of cam systems. However, the optimization is improved by combining the six order classical spline with general polynomial spline which is the so-called "trade-offs". Finally, improved optimization is proven to have a better performance in designing cam profiles.
文摘A class of generalized moving average operators is introduced, and the integral representations of an average function are provided. It has been shown that the average of Dirac δ distribution is just the well known box spline. Some remarks on box splines, such as their smoothness and the corresponding partition of unity, are made. The factorization of average operators is derived. Then, the subdivision algorithm for efficient computing of box splines and their linear combinations follows.
基金indebted to the Sohar University and the University of Buraimi, Oman, to support this study
文摘The assessment of in situ permeability of rock mass is challenging for large-scale projects such as reservoirs created by dams,where water tightness issues are of prime importance.The in situ permeability is strongly related to the frequency and distribution of discontinuities in the rock mass and quantified by rock quality designation(RQD).This paper analyzes the data of hydraulic conductivity and discontinuities sampled at different depths during the borehole investigations in the limestone and sandstone formations for the construction of hydraulic structures in Oman.Cores recovered from boreholes provide RQD data,and in situ Lugeon tests elucidate the permeability.A modern technique of multivariate adaptive regression splines(MARS)assisted in correlating permeability and RQD along with the depth.In situ permeability shows a declining trend with increasing RQD,and the depth of investigation is within 50 m.This type of relationship can be developed based on detailed initial investigations at the site where the hydraulic conductivity of discontinuous rocks is required to be delineated.The relationship can approximate the permeability by only measuring the RQD in later investigations on the same site,thus saving the time and cost of the site investigations.The applicability of the relationship developed in this study to another location requires a lithological similarity of the rock mass that can be verified through preliminary investigation at the site.