Transverse-flux with high efficiency has been applied in Stirling engine and permanent magnet synchronous linear generator system,however it is restricted for large application because of low and complex process.A nov...Transverse-flux with high efficiency has been applied in Stirling engine and permanent magnet synchronous linear generator system,however it is restricted for large application because of low and complex process.A novel type of cylindrical,non-overlapping,transverse-flux,and permanent-magnet linear motor(TFPLM) is investigated,furthermore,a high power factor and less process complexity structure research is developed.The impact of magnetic leakage factor on power factor is discussed,by using the Finite Element Analysis(FEA) model of stirling engine and TFPLM,an optimization method for electro-magnetic design of TFPLM is proposed based on magnetic leakage factor.The relation between power factor and structure parameter is investigated,and a structure parameter optimization method is proposed taking power factor maximum as a goal.At last,the test bench is founded,starting experimental and generating experimental are performed,and a good agreement of simulation and experimental is achieved.The power factor is improved and the process complexity is decreased.This research provides the instruction to design high-power factor permanent-magnet linear generator.展开更多
The thermoelectric energy conversion technique by employing the Disk-Magnet Electromagnetic Induction (DM-EMI) is examined in detail, and possible applications to heat engines as one of the energy-harvesting technolog...The thermoelectric energy conversion technique by employing the Disk-Magnet Electromagnetic Induction (DM-EMI) is examined in detail, and possible applications to heat engines as one of the energy-harvesting technologies are discussed. The idea is induced by the analysis of thermomechanical dynamics (TMD) for a nonequilibrium irreversible thermodynamic system of heat engines, such as a drinking bird and a low temperature Stirling engine, resulting in thermoelectric energy generation different from conventional heat engines. The current thermoelectric energy conversion with DM-EMI can be applied to wide ranges of machines and temperature differences. The mechanism of DM-EMI energy converter is categorized as the axial flux generator (AFG), which is the reason why the technology is applicable to sensitive thermoelectric conversions. On the other hand, almost all the conventional turbines use the radius flux generator to extract huge electric power, which uses the radial flux generator (RFG). The axial flux generator is helpful for a low mechanoelectric energy conversion and activations of waste heat from macroscopic energy generators such as wind, geothermal, thermal, nuclear power plants and heat-dissipation lines. The technique of DM-EMI will contribute to solving environmental problems to maintain clean and sustainable energy as one of the energy harvesting technologies.展开更多
A thermoelectric generation Stirling engine (TEG-Stirling engine) is discussed by employing a low temperature Stirling engine and the dissipative equation of motion derived from the method of thermomechanical dynamics...A thermoelectric generation Stirling engine (TEG-Stirling engine) is discussed by employing a low temperature Stirling engine and the dissipative equation of motion derived from the method of thermomechanical dynamics (TMD). The results and mechanism of axial flux electromagnetic induction (AF-EMI) are applied to a low temperature Stirling engine, resulting in a TEG-Stirling engine. The method of TMD produced thermodynamically consistent and time-dependent physical quantities for the first time, such as internal energy ℰ(t), thermodynamic work Wth(t), the total entropy (heat dissipation) Qd(t)and measure or temperature of a nonequilibrium state T˜(t). The TMD analysis produced a lightweight mechanical system of TEG-Stirling engine which derives electric power from waste heat of temperature (40˚CT100˚C) by a thermoelectric conversion method. An optimal low rotational speed about 30θ′(t)/(2π)60(rpm) is found, applicable to devices for sustainable, clean energy technologies. The stability of a thermal state and angular rotations of TEG-Stirling engine are specifically shown by employing properties of nonequilibrium temperature T˜(t), which is also applied to study optimal fuel-injection and combustion timings of heat engines.展开更多
We applied the method of Thermomechanical Dynamics (TMD) to a low-temperature Stirling engine, and the dissipative equation of motion and time-evolving physical quantities are self-consistently calculated for the firs...We applied the method of Thermomechanical Dynamics (TMD) to a low-temperature Stirling engine, and the dissipative equation of motion and time-evolving physical quantities are self-consistently calculated for the first time in this field. The thermomechanical states of the heat engine are in Nonequilibrium Irreversible States (NISs), and time-dependent thermodynamic work W(t), internal energy E(t), energy dissipation or entropy Q<sub>d</sub>(t), and temperature T(t), are precisely studied and computed in TMD. We also introduced the new formalism, Q(t)-picture of thermodynamic heat-energy flows, for consistent analyses of NISs. Thermal flows in a long-time uniform heat flow and in a short-time heat flow are numerically studied as examples. In addition to the analysis of time-dependent physical quantities, the TMD analysis suggests that the concept of force and acceleration in Newtonian mechanics should be modified. The acceleration is defined as a continuously differentiable function of Class C<sup>2</sup> in Newtonian mechanics, but the thermomechanical dynamics demands piecewise continuity for acceleration and thermal force, required from physical reasons caused by frictional variations and thermal fluctuations. The acceleration has no direct physical meaning associated with force in TMD. The physical implications are fundamental for the concept of the macroscopic phenomena in NISs composed of systems in thermal and mechanical motion.展开更多
基金Supported by National Natural Science Foundation of China(Grant No.50877013)
文摘Transverse-flux with high efficiency has been applied in Stirling engine and permanent magnet synchronous linear generator system,however it is restricted for large application because of low and complex process.A novel type of cylindrical,non-overlapping,transverse-flux,and permanent-magnet linear motor(TFPLM) is investigated,furthermore,a high power factor and less process complexity structure research is developed.The impact of magnetic leakage factor on power factor is discussed,by using the Finite Element Analysis(FEA) model of stirling engine and TFPLM,an optimization method for electro-magnetic design of TFPLM is proposed based on magnetic leakage factor.The relation between power factor and structure parameter is investigated,and a structure parameter optimization method is proposed taking power factor maximum as a goal.At last,the test bench is founded,starting experimental and generating experimental are performed,and a good agreement of simulation and experimental is achieved.The power factor is improved and the process complexity is decreased.This research provides the instruction to design high-power factor permanent-magnet linear generator.
文摘The thermoelectric energy conversion technique by employing the Disk-Magnet Electromagnetic Induction (DM-EMI) is examined in detail, and possible applications to heat engines as one of the energy-harvesting technologies are discussed. The idea is induced by the analysis of thermomechanical dynamics (TMD) for a nonequilibrium irreversible thermodynamic system of heat engines, such as a drinking bird and a low temperature Stirling engine, resulting in thermoelectric energy generation different from conventional heat engines. The current thermoelectric energy conversion with DM-EMI can be applied to wide ranges of machines and temperature differences. The mechanism of DM-EMI energy converter is categorized as the axial flux generator (AFG), which is the reason why the technology is applicable to sensitive thermoelectric conversions. On the other hand, almost all the conventional turbines use the radius flux generator to extract huge electric power, which uses the radial flux generator (RFG). The axial flux generator is helpful for a low mechanoelectric energy conversion and activations of waste heat from macroscopic energy generators such as wind, geothermal, thermal, nuclear power plants and heat-dissipation lines. The technique of DM-EMI will contribute to solving environmental problems to maintain clean and sustainable energy as one of the energy harvesting technologies.
文摘A thermoelectric generation Stirling engine (TEG-Stirling engine) is discussed by employing a low temperature Stirling engine and the dissipative equation of motion derived from the method of thermomechanical dynamics (TMD). The results and mechanism of axial flux electromagnetic induction (AF-EMI) are applied to a low temperature Stirling engine, resulting in a TEG-Stirling engine. The method of TMD produced thermodynamically consistent and time-dependent physical quantities for the first time, such as internal energy ℰ(t), thermodynamic work Wth(t), the total entropy (heat dissipation) Qd(t)and measure or temperature of a nonequilibrium state T˜(t). The TMD analysis produced a lightweight mechanical system of TEG-Stirling engine which derives electric power from waste heat of temperature (40˚CT100˚C) by a thermoelectric conversion method. An optimal low rotational speed about 30θ′(t)/(2π)60(rpm) is found, applicable to devices for sustainable, clean energy technologies. The stability of a thermal state and angular rotations of TEG-Stirling engine are specifically shown by employing properties of nonequilibrium temperature T˜(t), which is also applied to study optimal fuel-injection and combustion timings of heat engines.
文摘We applied the method of Thermomechanical Dynamics (TMD) to a low-temperature Stirling engine, and the dissipative equation of motion and time-evolving physical quantities are self-consistently calculated for the first time in this field. The thermomechanical states of the heat engine are in Nonequilibrium Irreversible States (NISs), and time-dependent thermodynamic work W(t), internal energy E(t), energy dissipation or entropy Q<sub>d</sub>(t), and temperature T(t), are precisely studied and computed in TMD. We also introduced the new formalism, Q(t)-picture of thermodynamic heat-energy flows, for consistent analyses of NISs. Thermal flows in a long-time uniform heat flow and in a short-time heat flow are numerically studied as examples. In addition to the analysis of time-dependent physical quantities, the TMD analysis suggests that the concept of force and acceleration in Newtonian mechanics should be modified. The acceleration is defined as a continuously differentiable function of Class C<sup>2</sup> in Newtonian mechanics, but the thermomechanical dynamics demands piecewise continuity for acceleration and thermal force, required from physical reasons caused by frictional variations and thermal fluctuations. The acceleration has no direct physical meaning associated with force in TMD. The physical implications are fundamental for the concept of the macroscopic phenomena in NISs composed of systems in thermal and mechanical motion.